1. 性能监控与诊断

1.1 性能指标监控

from enum import Enum
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Any
from datetime import datetime, timedelta
import threading
import time
import random
import statistics

class MetricType(Enum):
    """性能指标类型枚举"""
    QPS = "qps"  # 每秒查询数
    LATENCY = "latency"  # 延迟
    THROUGHPUT = "throughput"  # 吞吐量
    CPU_USAGE = "cpu_usage"  # CPU使用率
    MEMORY_USAGE = "memory_usage"  # 内存使用率
    DISK_IO = "disk_io"  # 磁盘IO
    NETWORK_IO = "network_io"  # 网络IO
    REGION_COUNT = "region_count"  # Region数量
    COMPACTION_QUEUE = "compaction_queue"  # 压缩队列
    BLOCK_CACHE_HIT_RATIO = "block_cache_hit_ratio"  # 块缓存命中率

class AlertLevel(Enum):
    """告警级别枚举"""
    INFO = "info"
    WARNING = "warning"
    CRITICAL = "critical"
    EMERGENCY = "emergency"

@dataclass
class PerformanceMetric:
    """性能指标数据类"""
    metric_type: MetricType
    value: float
    timestamp: datetime = field(default_factory=datetime.now)
    node_id: str = "default"
    table_name: Optional[str] = None
    region_name: Optional[str] = None
    unit: str = ""
    tags: Dict[str, str] = field(default_factory=dict)

@dataclass
class PerformanceAlert:
    """性能告警数据类"""
    alert_id: str
    metric_type: MetricType
    level: AlertLevel
    message: str
    current_value: float
    threshold_value: float
    node_id: str
    timestamp: datetime = field(default_factory=datetime.now)
    resolved: bool = False
    resolved_time: Optional[datetime] = None

class HBasePerformanceMonitor:
    """HBase性能监控器"""
    
    def __init__(self):
        self.metrics: List[PerformanceMetric] = []
        self.alerts: List[PerformanceAlert] = []
        self.thresholds: Dict[MetricType, Dict[str, float]] = {
            MetricType.QPS: {"warning": 1000, "critical": 2000},
            MetricType.LATENCY: {"warning": 100, "critical": 500},  # ms
            MetricType.CPU_USAGE: {"warning": 70, "critical": 90},  # %
            MetricType.MEMORY_USAGE: {"warning": 80, "critical": 95},  # %
            MetricType.DISK_IO: {"warning": 80, "critical": 95},  # %
            MetricType.BLOCK_CACHE_HIT_RATIO: {"warning": 80, "critical": 60}  # %
        }
        self.monitoring_active = False
        self._lock = threading.Lock()
    
    def start_monitoring(self, interval_seconds: int = 30):
        """启动性能监控"""
        if self.monitoring_active:
            print("性能监控已在运行")
            return
        
        self.monitoring_active = True
        print(f"启动性能监控,采集间隔: {interval_seconds} 秒")
        
        # 启动监控线程
        monitor_thread = threading.Thread(
            target=self._monitoring_loop, 
            args=(interval_seconds,)
        )
        monitor_thread.daemon = True
        monitor_thread.start()
    
    def _monitoring_loop(self, interval_seconds: int):
        """监控循环"""
        while self.monitoring_active:
            try:
                # 收集各种性能指标
                self._collect_qps_metrics()
                self._collect_latency_metrics()
                self._collect_system_metrics()
                self._collect_hbase_metrics()
                
                # 检查告警
                self._check_alerts()
                
                time.sleep(interval_seconds)
                
            except Exception as e:
                print(f"监控循环错误: {e}")
                time.sleep(interval_seconds)
    
    def _collect_qps_metrics(self):
        """收集QPS指标"""
        # 模拟不同节点的QPS数据
        nodes = ["node1", "node2", "node3"]
        
        for node in nodes:
            qps = random.uniform(500, 1500)
            
            metric = PerformanceMetric(
                metric_type=MetricType.QPS,
                value=qps,
                node_id=node,
                unit="requests/sec"
            )
            
            with self._lock:
                self.metrics.append(metric)
    
    def _collect_latency_metrics(self):
        """收集延迟指标"""
        operations = ["get", "put", "scan", "delete"]
        nodes = ["node1", "node2", "node3"]
        
        for node in nodes:
            for operation in operations:
                # 模拟不同操作的延迟
                if operation == "scan":
                    latency = random.uniform(50, 200)
                else:
                    latency = random.uniform(1, 50)
                
                metric = PerformanceMetric(
                    metric_type=MetricType.LATENCY,
                    value=latency,
                    node_id=node,
                    unit="ms",
                    tags={"operation": operation}
                )
                
                with self._lock:
                    self.metrics.append(metric)
    
    def _collect_system_metrics(self):
        """收集系统指标"""
        nodes = ["node1", "node2", "node3"]
        
        for node in nodes:
            # CPU使用率
            cpu_usage = random.uniform(30, 85)
            cpu_metric = PerformanceMetric(
                metric_type=MetricType.CPU_USAGE,
                value=cpu_usage,
                node_id=node,
                unit="%"
            )
            
            # 内存使用率
            memory_usage = random.uniform(60, 90)
            memory_metric = PerformanceMetric(
                metric_type=MetricType.MEMORY_USAGE,
                value=memory_usage,
                node_id=node,
                unit="%"
            )
            
            # 磁盘IO
            disk_io = random.uniform(20, 80)
            disk_metric = PerformanceMetric(
                metric_type=MetricType.DISK_IO,
                value=disk_io,
                node_id=node,
                unit="%"
            )
            
            with self._lock:
                self.metrics.extend([cpu_metric, memory_metric, disk_metric])
    
    def _collect_hbase_metrics(self):
        """收集HBase特定指标"""
        nodes = ["node1", "node2", "node3"]
        
        for node in nodes:
            # Region数量
            region_count = random.randint(50, 200)
            region_metric = PerformanceMetric(
                metric_type=MetricType.REGION_COUNT,
                value=region_count,
                node_id=node,
                unit="count"
            )
            
            # 压缩队列长度
            compaction_queue = random.randint(0, 10)
            compaction_metric = PerformanceMetric(
                metric_type=MetricType.COMPACTION_QUEUE,
                value=compaction_queue,
                node_id=node,
                unit="count"
            )
            
            # 块缓存命中率
            cache_hit_ratio = random.uniform(75, 95)
            cache_metric = PerformanceMetric(
                metric_type=MetricType.BLOCK_CACHE_HIT_RATIO,
                value=cache_hit_ratio,
                node_id=node,
                unit="%"
            )
            
            with self._lock:
                self.metrics.extend([region_metric, compaction_metric, cache_metric])
    
    def _check_alerts(self):
        """检查告警条件"""
        # 获取最近的指标
        recent_metrics = self._get_recent_metrics(minutes=5)
        
        # 按指标类型和节点分组
        grouped_metrics = {}
        for metric in recent_metrics:
            key = (metric.metric_type, metric.node_id)
            if key not in grouped_metrics:
                grouped_metrics[key] = []
            grouped_metrics[key].append(metric)
        
        # 检查每个分组的告警条件
        for (metric_type, node_id), metrics_list in grouped_metrics.items():
            if metric_type not in self.thresholds:
                continue
            
            # 计算平均值
            avg_value = statistics.mean([m.value for m in metrics_list])
            thresholds = self.thresholds[metric_type]
            
            # 检查告警级别
            alert_level = None
            threshold_value = None
            
            if avg_value >= thresholds.get("critical", float('inf')):
                alert_level = AlertLevel.CRITICAL
                threshold_value = thresholds["critical"]
            elif avg_value >= thresholds.get("warning", float('inf')):
                alert_level = AlertLevel.WARNING
                threshold_value = thresholds["warning"]
            
            # 生成告警
            if alert_level:
                self._generate_alert(
                    metric_type, alert_level, avg_value, 
                    threshold_value, node_id
                )
    
    def _generate_alert(self, metric_type: MetricType, level: AlertLevel, 
                       current_value: float, threshold_value: float, node_id: str):
        """生成告警"""
        alert_id = f"alert_{int(time.time())}_{random.randint(1000, 9999)}"
        
        message = (
            f"{metric_type.value} 超过 {level.value} 阈值: "
            f"当前值 {current_value:.2f}, 阈值 {threshold_value:.2f}"
        )
        
        alert = PerformanceAlert(
            alert_id=alert_id,
            metric_type=metric_type,
            level=level,
            message=message,
            current_value=current_value,
            threshold_value=threshold_value,
            node_id=node_id
        )
        
        with self._lock:
            self.alerts.append(alert)
        
        print(f"🚨 告警生成: [{level.value.upper()}] {node_id} - {message}")
    
    def _get_recent_metrics(self, minutes: int = 5) -> List[PerformanceMetric]:
        """获取最近的指标"""
        cutoff_time = datetime.now() - timedelta(minutes=minutes)
        
        with self._lock:
            return [m for m in self.metrics if m.timestamp >= cutoff_time]
    
    def stop_monitoring(self):
        """停止监控"""
        self.monitoring_active = False
        print("性能监控已停止")
    
    def get_metrics_summary(self, metric_type: MetricType = None, 
                           node_id: str = None, minutes: int = 30) -> Dict[str, Any]:
        """获取指标摘要"""
        recent_metrics = self._get_recent_metrics(minutes)
        
        # 过滤条件
        filtered_metrics = recent_metrics
        if metric_type:
            filtered_metrics = [m for m in filtered_metrics if m.metric_type == metric_type]
        if node_id:
            filtered_metrics = [m for m in filtered_metrics if m.node_id == node_id]
        
        if not filtered_metrics:
            return {"count": 0}
        
        values = [m.value for m in filtered_metrics]
        
        return {
            "count": len(filtered_metrics),
            "min": min(values),
            "max": max(values),
            "avg": statistics.mean(values),
            "median": statistics.median(values),
            "std_dev": statistics.stdev(values) if len(values) > 1 else 0,
            "latest_value": filtered_metrics[-1].value,
            "latest_timestamp": filtered_metrics[-1].timestamp.isoformat()
        }
    
    def get_active_alerts(self) -> List[Dict[str, Any]]:
        """获取活跃告警"""
        with self._lock:
            active_alerts = [a for a in self.alerts if not a.resolved]
        
        return [{
            "alert_id": alert.alert_id,
            "metric_type": alert.metric_type.value,
            "level": alert.level.value,
            "message": alert.message,
            "current_value": alert.current_value,
            "threshold_value": alert.threshold_value,
            "node_id": alert.node_id,
            "timestamp": alert.timestamp.isoformat(),
            "duration_minutes": (datetime.now() - alert.timestamp).total_seconds() / 60
        } for alert in active_alerts]
    
    def resolve_alert(self, alert_id: str) -> bool:
        """解决告警"""
        with self._lock:
            for alert in self.alerts:
                if alert.alert_id == alert_id and not alert.resolved:
                    alert.resolved = True
                    alert.resolved_time = datetime.now()
                    print(f"告警已解决: {alert_id}")
                    return True
        return False
    
    def get_monitoring_statistics(self) -> Dict[str, Any]:
        """获取监控统计信息"""
        with self._lock:
            total_metrics = len(self.metrics)
            total_alerts = len(self.alerts)
            active_alerts = len([a for a in self.alerts if not a.resolved])
        
        # 按指标类型统计
        metric_type_counts = {}
        for metric in self.metrics:
            metric_type = metric.metric_type.value
            if metric_type not in metric_type_counts:
                metric_type_counts[metric_type] = 0
            metric_type_counts[metric_type] += 1
        
        # 按告警级别统计
        alert_level_counts = {}
        for alert in self.alerts:
            level = alert.level.value
            if level not in alert_level_counts:
                alert_level_counts[level] = 0
            alert_level_counts[level] += 1
        
        return {
            "monitoring_active": self.monitoring_active,
            "total_metrics_collected": total_metrics,
            "total_alerts_generated": total_alerts,
            "active_alerts": active_alerts,
            "metric_type_distribution": metric_type_counts,
            "alert_level_distribution": alert_level_counts,
            "collection_start_time": self.metrics[0].timestamp.isoformat() if self.metrics else None,
            "latest_collection_time": self.metrics[-1].timestamp.isoformat() if self.metrics else None
        }

# 性能监控示例
print("=== HBase性能监控示例 ===")

# 创建性能监控器
monitor = HBasePerformanceMonitor()

print("1. 启动性能监控:")
monitor.start_monitoring(interval_seconds=2)  # 2秒间隔用于演示

# 运行一段时间收集数据
print("\n2. 收集性能数据...")
time.sleep(10)

print("\n3. 查看QPS指标摘要:")
qps_summary = monitor.get_metrics_summary(MetricType.QPS, minutes=10)
print(f"  QPS统计: 平均 {qps_summary.get('avg', 0):.1f}, 最大 {qps_summary.get('max', 0):.1f}")
print(f"  数据点数量: {qps_summary.get('count', 0)}")

print("\n4. 查看延迟指标摘要:")
latency_summary = monitor.get_metrics_summary(MetricType.LATENCY, minutes=10)
print(f"  延迟统计: 平均 {latency_summary.get('avg', 0):.1f}ms, 最大 {latency_summary.get('max', 0):.1f}ms")
print(f"  标准差: {latency_summary.get('std_dev', 0):.1f}ms")

print("\n5. 查看活跃告警:")
active_alerts = monitor.get_active_alerts()
if active_alerts:
    for alert in active_alerts[:3]:  # 显示前3个告警
        print(f"  [{alert['level'].upper()}] {alert['node_id']}: {alert['message']}")
        print(f"    持续时间: {alert['duration_minutes']:.1f} 分钟")
else:
    print("  当前无活跃告警")

print("\n6. 监控统计信息:")
stats = monitor.get_monitoring_statistics()
print(f"  监控状态: {'运行中' if stats['monitoring_active'] else '已停止'}")
print(f"  收集指标数: {stats['total_metrics_collected']:,}")
print(f"  生成告警数: {stats['total_alerts_generated']}")
print(f"  活跃告警数: {stats['active_alerts']}")

print("\n  指标类型分布:")
for metric_type, count in stats['metric_type_distribution'].items():
    print(f"    {metric_type}: {count} 个")

# 停止监控
monitor.stop_monitoring()

2. 性能调优策略

2.1 配置优化

from enum import Enum
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Any, Union
import json
import os

class ConfigCategory(Enum):
    """配置类别枚举"""
    HBASE_SITE = "hbase-site"
    HBASE_ENV = "hbase-env"
    REGIONSERVER = "regionserver"
    MASTER = "master"
    CLIENT = "client"
    JVM = "jvm"
    HDFS = "hdfs"
    ZOOKEEPER = "zookeeper"

class PerformanceLevel(Enum):
    """性能级别枚举"""
    LOW = "low"
    MEDIUM = "medium"
    HIGH = "high"
    EXTREME = "extreme"

@dataclass
class ConfigParameter:
    """配置参数数据类"""
    name: str
    value: Union[str, int, float, bool]
    category: ConfigCategory
    description: str
    performance_impact: PerformanceLevel
    requires_restart: bool = True
    min_value: Optional[Union[int, float]] = None
    max_value: Optional[Union[int, float]] = None
    default_value: Optional[Union[str, int, float, bool]] = None
    tags: List[str] = field(default_factory=list)

@dataclass
class OptimizationRecommendation:
    """优化建议数据类"""
    recommendation_id: str
    title: str
    description: str
    category: ConfigCategory
    priority: PerformanceLevel
    config_changes: List[ConfigParameter]
    expected_improvement: str
    risks: List[str] = field(default_factory=list)
    prerequisites: List[str] = field(default_factory=list)
    estimated_impact_percentage: float = 0.0

class HBasePerformanceTuner:
    """HBase性能调优器"""
    
    def __init__(self):
        self.current_config: Dict[str, ConfigParameter] = {}
        self.recommendations: List[OptimizationRecommendation] = []
        self.applied_optimizations: List[str] = []
        self._initialize_default_configs()
        self._initialize_optimization_templates()
    
    def _initialize_default_configs(self):
        """初始化默认配置"""
        default_configs = [
            # HBase核心配置
            ConfigParameter(
                name="hbase.regionserver.handler.count",
                value=30,
                category=ConfigCategory.REGIONSERVER,
                description="RegionServer处理器线程数",
                performance_impact=PerformanceLevel.HIGH,
                min_value=10,
                max_value=200,
                default_value=30,
                tags=["concurrency", "throughput"]
            ),
            ConfigParameter(
                name="hbase.hregion.memstore.flush.size",
                value=134217728,  # 128MB
                category=ConfigCategory.REGIONSERVER,
                description="MemStore刷新大小",
                performance_impact=PerformanceLevel.HIGH,
                min_value=67108864,  # 64MB
                max_value=268435456,  # 256MB
                default_value=134217728,
                tags=["memory", "write_performance"]
            ),
            ConfigParameter(
                name="hbase.regionserver.global.memstore.size",
                value=0.4,
                category=ConfigCategory.REGIONSERVER,
                description="全局MemStore内存比例",
                performance_impact=PerformanceLevel.HIGH,
                min_value=0.2,
                max_value=0.8,
                default_value=0.4,
                tags=["memory", "write_performance"]
            ),
            ConfigParameter(
                name="hfile.block.cache.size",
                value=0.4,
                category=ConfigCategory.REGIONSERVER,
                description="块缓存大小比例",
                performance_impact=PerformanceLevel.HIGH,
                min_value=0.2,
                max_value=0.6,
                default_value=0.4,
                tags=["memory", "read_performance"]
            ),
            ConfigParameter(
                name="hbase.hstore.compactionThreshold",
                value=3,
                category=ConfigCategory.REGIONSERVER,
                description="压缩触发阈值",
                performance_impact=PerformanceLevel.MEDIUM,
                min_value=2,
                max_value=10,
                default_value=3,
                tags=["compaction", "storage"]
            ),
            # JVM配置
            ConfigParameter(
                name="HBASE_HEAPSIZE",
                value="8G",
                category=ConfigCategory.JVM,
                description="HBase堆内存大小",
                performance_impact=PerformanceLevel.HIGH,
                default_value="1G",
                tags=["memory", "jvm"]
            ),
            ConfigParameter(
                name="HBASE_OFFHEAPSIZE",
                value="4G",
                category=ConfigCategory.JVM,
                description="HBase堆外内存大小",
                performance_impact=PerformanceLevel.MEDIUM,
                default_value="0",
                tags=["memory", "jvm", "offheap"]
            ),
            # 客户端配置
            ConfigParameter(
                name="hbase.client.write.buffer",
                value=2097152,  # 2MB
                category=ConfigCategory.CLIENT,
                description="客户端写缓冲区大小",
                performance_impact=PerformanceLevel.MEDIUM,
                min_value=1048576,  # 1MB
                max_value=16777216,  # 16MB
                default_value=2097152,
                tags=["client", "write_performance"]
            ),
            ConfigParameter(
                name="hbase.client.scanner.caching",
                value=1000,
                category=ConfigCategory.CLIENT,
                description="扫描器缓存行数",
                performance_impact=PerformanceLevel.MEDIUM,
                min_value=100,
                max_value=10000,
                default_value=1000,
                tags=["client", "scan_performance"]
            )
        ]
        
        for config in default_configs:
            self.current_config[config.name] = config
    
    def _initialize_optimization_templates(self):
        """初始化优化模板"""
        # 读性能优化模板
        read_optimization = OptimizationRecommendation(
            recommendation_id="read_perf_001",
            title="读性能优化配置",
            description="优化HBase读操作性能,提高查询响应速度",
            category=ConfigCategory.REGIONSERVER,
            priority=PerformanceLevel.HIGH,
            config_changes=[
                ConfigParameter(
                    name="hfile.block.cache.size",
                    value=0.5,
                    category=ConfigCategory.REGIONSERVER,
                    description="增加块缓存大小以提高读性能",
                    performance_impact=PerformanceLevel.HIGH,
                    tags=["read_optimization"]
                ),
                ConfigParameter(
                    name="hbase.bucketcache.size",
                    value="4G",
                    category=ConfigCategory.REGIONSERVER,
                    description="启用桶缓存提高缓存效率",
                    performance_impact=PerformanceLevel.MEDIUM,
                    tags=["read_optimization", "cache"]
                )
            ],
            expected_improvement="读操作延迟降低20-30%",
            risks=["内存使用增加", "可能影响写性能"],
            prerequisites=["足够的可用内存"],
            estimated_impact_percentage=25.0
        )
        
        # 写性能优化模板
        write_optimization = OptimizationRecommendation(
            recommendation_id="write_perf_001",
            title="写性能优化配置",
            description="优化HBase写操作性能,提高数据写入吞吐量",
            category=ConfigCategory.REGIONSERVER,
            priority=PerformanceLevel.HIGH,
            config_changes=[
                ConfigParameter(
                    name="hbase.regionserver.global.memstore.size",
                    value=0.5,
                    category=ConfigCategory.REGIONSERVER,
                    description="增加MemStore内存比例",
                    performance_impact=PerformanceLevel.HIGH,
                    tags=["write_optimization"]
                ),
                ConfigParameter(
                    name="hbase.hregion.memstore.flush.size",
                    value=268435456,  # 256MB
                    category=ConfigCategory.REGIONSERVER,
                    description="增加MemStore刷新大小",
                    performance_impact=PerformanceLevel.HIGH,
                    tags=["write_optimization"]
                ),
                ConfigParameter(
                    name="hbase.regionserver.handler.count",
                    value=50,
                    category=ConfigCategory.REGIONSERVER,
                    description="增加处理器线程数",
                    performance_impact=PerformanceLevel.MEDIUM,
                    tags=["write_optimization", "concurrency"]
                )
            ],
            expected_improvement="写操作吞吐量提升30-40%",
            risks=["内存使用增加", "可能增加GC压力"],
            prerequisites=["足够的可用内存", "合适的GC配置"],
            estimated_impact_percentage=35.0
        )
        
        # 压缩优化模板
        compaction_optimization = OptimizationRecommendation(
            recommendation_id="compaction_001",
            title="压缩性能优化",
            description="优化HBase压缩策略,减少压缩对性能的影响",
            category=ConfigCategory.REGIONSERVER,
            priority=PerformanceLevel.MEDIUM,
            config_changes=[
                ConfigParameter(
                    name="hbase.hstore.compaction.max",
                    value=5,
                    category=ConfigCategory.REGIONSERVER,
                    description="限制单次压缩文件数",
                    performance_impact=PerformanceLevel.MEDIUM,
                    tags=["compaction"]
                ),
                ConfigParameter(
                    name="hbase.regionserver.thread.compaction.large",
                    value=2,
                    category=ConfigCategory.REGIONSERVER,
                    description="大压缩线程数",
                    performance_impact=PerformanceLevel.MEDIUM,
                    tags=["compaction", "concurrency"]
                ),
                ConfigParameter(
                    name="hbase.regionserver.thread.compaction.small",
                    value=4,
                    category=ConfigCategory.REGIONSERVER,
                    description="小压缩线程数",
                    performance_impact=PerformanceLevel.MEDIUM,
                    tags=["compaction", "concurrency"]
                )
            ],
            expected_improvement="压缩对读写性能影响降低15-20%",
            risks=["CPU使用增加"],
            prerequisites=["多核CPU"],
            estimated_impact_percentage=18.0
        )
        
        self.recommendations = [
            read_optimization,
            write_optimization,
            compaction_optimization
        ]
    
    def analyze_current_performance(self, metrics: Dict[str, float]) -> Dict[str, Any]:
        """分析当前性能"""
        analysis = {
            "overall_score": 0.0,
            "bottlenecks": [],
            "recommendations": [],
            "performance_areas": {}
        }
        
        # 分析读性能
        read_latency = metrics.get("avg_read_latency", 50)
        cache_hit_ratio = metrics.get("cache_hit_ratio", 85)
        
        read_score = 100
        if read_latency > 100:
            read_score -= (read_latency - 100) / 10
            analysis["bottlenecks"].append("读延迟过高")
        
        if cache_hit_ratio < 80:
            read_score -= (80 - cache_hit_ratio) * 2
            analysis["bottlenecks"].append("缓存命中率低")
        
        analysis["performance_areas"]["read_performance"] = max(0, min(100, read_score))
        
        # 分析写性能
        write_throughput = metrics.get("write_throughput", 1000)
        memstore_usage = metrics.get("memstore_usage", 60)
        
        write_score = 100
        if write_throughput < 500:
            write_score -= (500 - write_throughput) / 10
            analysis["bottlenecks"].append("写吞吐量低")
        
        if memstore_usage > 80:
            write_score -= (memstore_usage - 80) * 2
            analysis["bottlenecks"].append("MemStore使用率高")
        
        analysis["performance_areas"]["write_performance"] = max(0, min(100, write_score))
        
        # 分析系统资源
        cpu_usage = metrics.get("cpu_usage", 50)
        memory_usage = metrics.get("memory_usage", 70)
        
        resource_score = 100
        if cpu_usage > 80:
            resource_score -= (cpu_usage - 80) * 3
            analysis["bottlenecks"].append("CPU使用率高")
        
        if memory_usage > 85:
            resource_score -= (memory_usage - 85) * 4
            analysis["bottlenecks"].append("内存使用率高")
        
        analysis["performance_areas"]["resource_utilization"] = max(0, min(100, resource_score))
        
        # 计算总体评分
        area_scores = list(analysis["performance_areas"].values())
        analysis["overall_score"] = sum(area_scores) / len(area_scores) if area_scores else 0
        
        # 生成推荐
        if analysis["performance_areas"]["read_performance"] < 70:
            analysis["recommendations"].append("read_perf_001")
        
        if analysis["performance_areas"]["write_performance"] < 70:
            analysis["recommendations"].append("write_perf_001")
        
        if "压缩" in " ".join(analysis["bottlenecks"]):
            analysis["recommendations"].append("compaction_001")
        
        return analysis
    
    def get_optimization_recommendations(self, 
                                       performance_focus: str = "balanced") -> List[OptimizationRecommendation]:
        """获取优化建议"""
        if performance_focus == "read":
            return [r for r in self.recommendations if "read" in r.recommendation_id]
        elif performance_focus == "write":
            return [r for r in self.recommendations if "write" in r.recommendation_id]
        elif performance_focus == "compaction":
            return [r for r in self.recommendations if "compaction" in r.recommendation_id]
        else:
            return self.recommendations
    
    def apply_optimization(self, recommendation_id: str) -> Dict[str, Any]:
        """应用优化建议"""
        recommendation = None
        for rec in self.recommendations:
            if rec.recommendation_id == recommendation_id:
                recommendation = rec
                break
        
        if not recommendation:
            return {"success": False, "error": "优化建议不存在"}
        
        if recommendation_id in self.applied_optimizations:
            return {"success": False, "error": "优化已应用"}
        
        # 应用配置变更
        applied_configs = []
        for config_change in recommendation.config_changes:
            old_value = None
            if config_change.name in self.current_config:
                old_value = self.current_config[config_change.name].value
            
            self.current_config[config_change.name] = config_change
            applied_configs.append({
                "name": config_change.name,
                "old_value": old_value,
                "new_value": config_change.value,
                "requires_restart": config_change.requires_restart
            })
        
        self.applied_optimizations.append(recommendation_id)
        
        return {
            "success": True,
            "recommendation_id": recommendation_id,
            "title": recommendation.title,
            "applied_configs": applied_configs,
            "expected_improvement": recommendation.expected_improvement,
            "requires_restart": any(c.requires_restart for c in recommendation.config_changes)
        }
    
    def generate_config_file(self, category: ConfigCategory, 
                           file_format: str = "xml") -> str:
        """生成配置文件"""
        configs = [c for c in self.current_config.values() if c.category == category]
        
        if file_format == "xml":
            return self._generate_xml_config(configs, category)
        elif file_format == "properties":
            return self._generate_properties_config(configs)
        else:
            return self._generate_json_config(configs)
    
    def _generate_xml_config(self, configs: List[ConfigParameter], 
                           category: ConfigCategory) -> str:
        """生成XML格式配置"""
        xml_content = ["<?xml version='1.0'?>", "<configuration>"]
        
        for config in configs:
            xml_content.extend([
                "  <property>",
                f"    <name>{config.name}</name>",
                f"    <value>{config.value}</value>",
                f"    <description>{config.description}</description>",
                "  </property>"
            ])
        
        xml_content.append("</configuration>")
        return "\n".join(xml_content)
    
    def _generate_properties_config(self, configs: List[ConfigParameter]) -> str:
        """生成Properties格式配置"""
        properties_content = []
        
        for config in configs:
            properties_content.extend([
                f"# {config.description}",
                f"{config.name}={config.value}",
                ""
            ])
        
        return "\n".join(properties_content)
    
    def _generate_json_config(self, configs: List[ConfigParameter]) -> str:
        """生成JSON格式配置"""
        config_dict = {}
        
        for config in configs:
            config_dict[config.name] = {
                "value": config.value,
                "description": config.description,
                "category": config.category.value,
                "performance_impact": config.performance_impact.value
            }
        
        return json.dumps(config_dict, indent=2, ensure_ascii=False)
    
    def get_tuning_summary(self) -> Dict[str, Any]:
        """获取调优摘要"""
        return {
            "total_configurations": len(self.current_config),
            "applied_optimizations": len(self.applied_optimizations),
            "available_recommendations": len(self.recommendations),
            "configuration_categories": list(set(c.category.value for c in self.current_config.values())),
            "high_impact_configs": len([c for c in self.current_config.values() 
                                      if c.performance_impact == PerformanceLevel.HIGH]),
            "configs_requiring_restart": len([c for c in self.current_config.values() 
                                            if c.requires_restart]),
            "optimization_history": self.applied_optimizations
        }

# 性能调优示例
print("\n=== HBase性能调优示例 ===")

# 创建性能调优器
tuner = HBasePerformanceTuner()

print("1. 分析当前性能:")
# 模拟性能指标
current_metrics = {
    "avg_read_latency": 120,  # ms
    "cache_hit_ratio": 75,   # %
    "write_throughput": 800, # ops/sec
    "memstore_usage": 85,    # %
    "cpu_usage": 70,         # %
    "memory_usage": 80       # %
}

analysis = tuner.analyze_current_performance(current_metrics)
print(f"  总体评分: {analysis['overall_score']:.1f}/100")
print(f"  性能瓶颈: {', '.join(analysis['bottlenecks']) if analysis['bottlenecks'] else '无'}")
print("  各项性能评分:")
for area, score in analysis['performance_areas'].items():
    print(f"    {area}: {score:.1f}/100")

print("\n2. 获取优化建议:")
recommendations = tuner.get_optimization_recommendations()
for i, rec in enumerate(recommendations, 1):
    print(f"  {i}. {rec.title}")
    print(f"     优先级: {rec.priority.value}")
    print(f"     预期改善: {rec.expected_improvement}")
    print(f"     配置变更数: {len(rec.config_changes)}")

print("\n3. 应用读性能优化:")
result = tuner.apply_optimization("read_perf_001")
if result['success']:
    print(f"  ✅ 已应用: {result['title']}")
    print(f"  预期改善: {result['expected_improvement']}")
    print(f"  需要重启: {'是' if result['requires_restart'] else '否'}")
    print("  配置变更:")
    for config in result['applied_configs']:
        print(f"    {config['name']}: {config['old_value']} → {config['new_value']}")
else:
    print(f"  ❌ 应用失败: {result['error']}")

print("\n4. 生成HBase配置文件:")
config_xml = tuner.generate_config_file(ConfigCategory.REGIONSERVER, "xml")
print("  hbase-site.xml (部分内容):")
print("  " + "\n  ".join(config_xml.split("\n")[:15]) + "\n  ...")

print("\n5. 调优摘要:")
summary = tuner.get_tuning_summary()
print(f"  配置项总数: {summary['total_configurations']}")
print(f"  已应用优化: {summary['applied_optimizations']}")
print(f"  高影响配置: {summary['high_impact_configs']}")
print(f"  需重启配置: {summary['configs_requiring_restart']}")
print(f"  配置类别: {', '.join(summary['configuration_categories'])}")

2.2 表设计优化

from enum import Enum
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Any, Set
import hashlib
import random
import string

class RowKeyDesignPattern(Enum):
    """行键设计模式枚举"""
    SEQUENTIAL = "sequential"  # 顺序模式
    HASH_PREFIX = "hash_prefix"  # 哈希前缀
    REVERSE_TIMESTAMP = "reverse_timestamp"  # 反向时间戳
    SALTED = "salted"  # 加盐
    COMPOSITE = "composite"  # 复合键

class CompressionType(Enum):
    """压缩类型枚举"""
    NONE = "NONE"
    GZIP = "GZIP"
    LZO = "LZO"
    SNAPPY = "SNAPPY"
    LZ4 = "LZ4"
    BZIP2 = "BZIP2"
    ZSTD = "ZSTD"

class BloomFilterType(Enum):
    """布隆过滤器类型枚举"""
    NONE = "NONE"
    ROW = "ROW"
    ROWCOL = "ROWCOL"

@dataclass
class ColumnFamilyDesign:
    """列族设计数据类"""
    name: str
    max_versions: int = 1
    ttl: int = 0  # 秒,0表示永不过期
    compression: CompressionType = CompressionType.SNAPPY
    bloom_filter: BloomFilterType = BloomFilterType.ROW
    block_size: int = 65536  # 64KB
    block_cache_enabled: bool = True
    in_memory: bool = False
    replication_scope: int = 0
    data_block_encoding: str = "FAST_DIFF"
    estimated_size_mb: float = 0.0
    access_pattern: str = "random"  # random, sequential

@dataclass
class TableDesign:
    """表设计数据类"""
    table_name: str
    row_key_pattern: RowKeyDesignPattern
    column_families: List[ColumnFamilyDesign]
    region_split_policy: str = "IncreasingToUpperBoundRegionSplitPolicy"
    max_file_size: int = 10737418240  # 10GB
    memstore_flush_size: int = 134217728  # 128MB
    compaction_enabled: bool = True
    split_enabled: bool = True
    estimated_rows: int = 0
    estimated_size_gb: float = 0.0
    read_write_ratio: str = "balanced"  # read_heavy, write_heavy, balanced

@dataclass
class DesignRecommendation:
    """设计建议数据类"""
    recommendation_id: str
    category: str
    title: str
    description: str
    current_issue: str
    suggested_change: str
    expected_benefit: str
    implementation_complexity: str  # low, medium, high
    risk_level: str  # low, medium, high

class HBaseTableDesignOptimizer:
    """HBase表设计优化器"""
    
    def __init__(self):
        self.table_designs: Dict[str, TableDesign] = {}
        self.design_recommendations: List[DesignRecommendation] = []
    
    def analyze_table_design(self, table_design: TableDesign) -> List[DesignRecommendation]:
        """分析表设计"""
        recommendations = []
        
        # 分析行键设计
        rowkey_recs = self._analyze_rowkey_design(table_design)
        recommendations.extend(rowkey_recs)
        
        # 分析列族设计
        cf_recs = self._analyze_column_family_design(table_design)
        recommendations.extend(cf_recs)
        
        # 分析压缩配置
        compression_recs = self._analyze_compression_config(table_design)
        recommendations.extend(compression_recs)
        
        # 分析Region配置
        region_recs = self._analyze_region_config(table_design)
        recommendations.extend(region_recs)
        
        return recommendations
    
    def _analyze_rowkey_design(self, table_design: TableDesign) -> List[DesignRecommendation]:
        """分析行键设计"""
        recommendations = []
        
        # 检查热点问题
        if table_design.row_key_pattern == RowKeyDesignPattern.SEQUENTIAL:
            if table_design.read_write_ratio in ["write_heavy", "balanced"]:
                recommendations.append(DesignRecommendation(
                    recommendation_id="rowkey_001",
                    category="行键设计",
                    title="避免顺序行键导致的热点",
                    description="当前使用顺序行键,在写入密集场景下容易产生热点",
                    current_issue="顺序行键导致写入集中在单个Region",
                    suggested_change="使用哈希前缀或加盐行键分散写入",
                    expected_benefit="写入性能提升50-80%,避免热点Region",
                    implementation_complexity="medium",
                    risk_level="low"
                ))
        
        # 检查时间序列数据优化
        if "timestamp" in table_design.table_name.lower():
            if table_design.row_key_pattern != RowKeyDesignPattern.REVERSE_TIMESTAMP:
                recommendations.append(DesignRecommendation(
                    recommendation_id="rowkey_002",
                    category="行键设计",
                    title="时间序列数据行键优化",
                    description="时间序列数据建议使用反向时间戳行键",
                    current_issue="正向时间戳导致最新数据查询效率低",
                    suggested_change="使用反向时间戳(Long.MAX_VALUE - timestamp)",
                    expected_benefit="最新数据查询性能提升3-5倍",
                    implementation_complexity="low",
                    risk_level="low"
                ))
        
        return recommendations
    
    def _analyze_column_family_design(self, table_design: TableDesign) -> List[DesignRecommendation]:
        """分析列族设计"""
        recommendations = []
        
        # 检查列族数量
        if len(table_design.column_families) > 3:
            recommendations.append(DesignRecommendation(
                recommendation_id="cf_001",
                category="列族设计",
                title="减少列族数量",
                description="过多的列族会影响性能",
                current_issue=f"当前有{len(table_design.column_families)}个列族,超过推荐数量",
                suggested_change="合并相关列族,保持在1-3个列族",
                expected_benefit="减少内存使用,提升压缩效率",
                implementation_complexity="high",
                risk_level="medium"
            ))
        
        # 检查TTL配置
        for cf in table_design.column_families:
            if cf.ttl == 0 and table_design.estimated_size_gb > 100:
                recommendations.append(DesignRecommendation(
                    recommendation_id=f"cf_ttl_{cf.name}",
                    category="列族设计",
                    title=f"为列族{cf.name}配置TTL",
                    description="大表建议配置TTL自动清理过期数据",
                    current_issue="未配置TTL,数据无限增长",
                    suggested_change="根据业务需求配置合适的TTL值",
                    expected_benefit="自动清理过期数据,控制存储成本",
                    implementation_complexity="low",
                    risk_level="low"
                ))
            
            # 检查版本数配置
            if cf.max_versions > 5:
                recommendations.append(DesignRecommendation(
                    recommendation_id=f"cf_versions_{cf.name}",
                    category="列族设计",
                    title=f"优化列族{cf.name}版本数",
                    description="过多版本会增加存储开销",
                    current_issue=f"当前配置{cf.max_versions}个版本,可能过多",
                    suggested_change="根据实际需求调整版本数,通常1-3个足够",
                    expected_benefit="减少存储空间,提升查询性能",
                    implementation_complexity="low",
                    risk_level="low"
                ))
    
        return recommendations
    
    def _analyze_compression_config(self, table_design: TableDesign) -> List[DesignRecommendation]:
        """分析压缩配置"""
        recommendations = []
        
        for cf in table_design.column_families:
            # 根据数据特征推荐压缩算法
            if cf.compression == CompressionType.NONE:
                recommendations.append(DesignRecommendation(
                    recommendation_id=f"compression_{cf.name}",
                    category="压缩配置",
                    title=f"为列族{cf.name}启用压缩",
                    description="启用压缩可以显著减少存储空间",
                    current_issue="未启用压缩,存储空间浪费",
                    suggested_change="推荐使用SNAPPY压缩(平衡压缩率和性能)",
                    expected_benefit="存储空间减少30-70%,网络传输加速",
                    implementation_complexity="low",
                    risk_level="low"
                ))
            
            # 根据访问模式推荐压缩算法
            elif table_design.read_write_ratio == "read_heavy" and cf.compression == CompressionType.SNAPPY:
                recommendations.append(DesignRecommendation(
                    recommendation_id=f"compression_read_{cf.name}",
                    category="压缩配置",
                    title=f"读密集场景优化列族{cf.name}压缩",
                    description="读密集场景可以使用更高压缩率的算法",
                    current_issue="当前使用SNAPPY,压缩率不够高",
                    suggested_change="考虑使用ZSTD或LZ4获得更好的压缩率",
                    expected_benefit="进一步减少存储空间和网络传输",
                    implementation_complexity="low",
                    risk_level="low"
                ))
        
        return recommendations
    
    def _analyze_region_config(self, table_design: TableDesign) -> List[DesignRecommendation]:
        """分析Region配置"""
        recommendations = []
        
        # 检查文件大小配置
        if table_design.max_file_size > 20 * 1024 * 1024 * 1024:  # 20GB
            recommendations.append(DesignRecommendation(
                recommendation_id="region_001",
                category="Region配置",
                title="优化最大文件大小",
                description="过大的文件会影响压缩和分裂性能",
                current_issue=f"当前最大文件大小{table_design.max_file_size // (1024**3)}GB过大",
                suggested_change="建议设置为10-15GB",
                expected_benefit="提升压缩效率,减少分裂时间",
                implementation_complexity="low",
                risk_level="low"
            ))
        
        # 检查预分区
        if table_design.estimated_rows > 10000000 and "pre_split" not in table_design.table_name:
            recommendations.append(DesignRecommendation(
                recommendation_id="region_002",
                category="Region配置",
                title="配置表预分区",
                description="大表建议预分区避免热点和频繁分裂",
                current_issue="大表未配置预分区,可能产生热点",
                suggested_change="根据行键分布创建预分区",
                expected_benefit="避免热点,提升初始写入性能",
                implementation_complexity="medium",
                risk_level="low"
            ))
        
        return recommendations
    
    def generate_optimized_table_design(self, original_design: TableDesign, 
                                       apply_recommendations: List[str] = None) -> TableDesign:
        """生成优化后的表设计"""
        optimized_design = TableDesign(
            table_name=original_design.table_name + "_optimized",
            row_key_pattern=original_design.row_key_pattern,
            column_families=[],
            region_split_policy=original_design.region_split_policy,
            max_file_size=original_design.max_file_size,
            memstore_flush_size=original_design.memstore_flush_size,
            compaction_enabled=original_design.compaction_enabled,
            split_enabled=original_design.split_enabled,
            estimated_rows=original_design.estimated_rows,
            estimated_size_gb=original_design.estimated_size_gb,
            read_write_ratio=original_design.read_write_ratio
        )
        
        # 复制并优化列族
        for cf in original_design.column_families:
            optimized_cf = ColumnFamilyDesign(
                name=cf.name,
                max_versions=min(cf.max_versions, 3),  # 限制版本数
                ttl=cf.ttl if cf.ttl > 0 else (30 * 24 * 3600 if original_design.estimated_size_gb > 100 else 0),  # 大表默认30天TTL
                compression=CompressionType.SNAPPY if cf.compression == CompressionType.NONE else cf.compression,
                bloom_filter=BloomFilterType.ROW if cf.bloom_filter == BloomFilterType.NONE else cf.bloom_filter,
                block_size=cf.block_size,
                block_cache_enabled=cf.block_cache_enabled,
                in_memory=cf.in_memory,
                replication_scope=cf.replication_scope,
                data_block_encoding=cf.data_block_encoding,
                estimated_size_mb=cf.estimated_size_mb,
                access_pattern=cf.access_pattern
            )
            optimized_design.column_families.append(optimized_cf)
        
        # 应用行键优化
        if original_design.row_key_pattern == RowKeyDesignPattern.SEQUENTIAL:
            if original_design.read_write_ratio in ["write_heavy", "balanced"]:
                optimized_design.row_key_pattern = RowKeyDesignPattern.HASH_PREFIX
        
        # 优化Region配置
        if original_design.max_file_size > 20 * 1024 * 1024 * 1024:
            optimized_design.max_file_size = 10 * 1024 * 1024 * 1024  # 10GB
        
        return optimized_design
    
    def generate_rowkey_examples(self, pattern: RowKeyDesignPattern, 
                               table_name: str, count: int = 5) -> List[str]:
        """生成行键示例"""
        examples = []
        
        if pattern == RowKeyDesignPattern.SEQUENTIAL:
            for i in range(count):
                examples.append(f"user_{i:010d}")
        
        elif pattern == RowKeyDesignPattern.HASH_PREFIX:
            for i in range(count):
                user_id = f"user_{i:06d}"
                hash_prefix = hashlib.md5(user_id.encode()).hexdigest()[:4]
                examples.append(f"{hash_prefix}_{user_id}")
        
        elif pattern == RowKeyDesignPattern.REVERSE_TIMESTAMP:
            import time
            current_time = int(time.time() * 1000)
            for i in range(count):
                timestamp = current_time - i * 1000
                reverse_ts = 9223372036854775807 - timestamp  # Long.MAX_VALUE - timestamp
                examples.append(f"{reverse_ts}_{i:06d}")
        
        elif pattern == RowKeyDesignPattern.SALTED:
            salt_buckets = 16
            for i in range(count):
                salt = i % salt_buckets
                examples.append(f"{salt:02d}_user_{i:06d}")
        
        elif pattern == RowKeyDesignPattern.COMPOSITE:
            regions = ["us-east", "us-west", "eu-west", "ap-south"]
            for i in range(count):
                region = regions[i % len(regions)]
                user_id = f"user_{i:06d}"
                timestamp = int(time.time() * 1000) - i * 1000
                examples.append(f"{region}_{user_id}_{timestamp}")
        
        return examples
    
    def estimate_performance_impact(self, original: TableDesign, 
                                  optimized: TableDesign) -> Dict[str, Any]:
        """估算性能影响"""
        impact = {
            "storage_reduction_percentage": 0.0,
            "read_performance_improvement": 0.0,
            "write_performance_improvement": 0.0,
            "compression_benefit": 0.0,
            "cache_efficiency_improvement": 0.0
        }
        
        # 计算压缩收益
        compression_savings = 0
        for orig_cf, opt_cf in zip(original.column_families, optimized.column_families):
            if orig_cf.compression == CompressionType.NONE and opt_cf.compression != CompressionType.NONE:
                compression_savings += 40  # 平均40%压缩率
        
        impact["compression_benefit"] = compression_savings / len(original.column_families) if original.column_families else 0
        impact["storage_reduction_percentage"] = impact["compression_benefit"]
        
        # 计算行键优化收益
        if (original.row_key_pattern == RowKeyDesignPattern.SEQUENTIAL and 
            optimized.row_key_pattern in [RowKeyDesignPattern.HASH_PREFIX, RowKeyDesignPattern.SALTED]):
            impact["write_performance_improvement"] = 60  # 写性能提升60%
        
        # 计算布隆过滤器收益
        bloom_improvement = 0
        for orig_cf, opt_cf in zip(original.column_families, optimized.column_families):
            if orig_cf.bloom_filter == BloomFilterType.NONE and opt_cf.bloom_filter != BloomFilterType.NONE:
                bloom_improvement += 25  # 读性能提升25%
        
        impact["read_performance_improvement"] = bloom_improvement / len(original.column_families) if original.column_families else 0
        
        # 计算缓存效率提升
        if any(cf.block_cache_enabled for cf in optimized.column_families):
            impact["cache_efficiency_improvement"] = 15
        
        return impact

# 表设计优化示例
print("\n=== HBase表设计优化示例 ===")

# 创建表设计优化器
optimizer = HBaseTableDesignOptimizer()

print("1. 创建原始表设计:")
# 创建一个需要优化的表设计
original_table = TableDesign(
    table_name="user_activity_log",
    row_key_pattern=RowKeyDesignPattern.SEQUENTIAL,
    column_families=[
        ColumnFamilyDesign(
            name="info",
            max_versions=10,
            ttl=0,
            compression=CompressionType.NONE,
            bloom_filter=BloomFilterType.NONE
        ),
        ColumnFamilyDesign(
            name="activity",
            max_versions=5,
            ttl=0,
            compression=CompressionType.GZIP,
            bloom_filter=BloomFilterType.ROW
        ),
        ColumnFamilyDesign(
            name="metadata",
            max_versions=1,
            ttl=0,
            compression=CompressionType.SNAPPY,
            bloom_filter=BloomFilterType.ROW
        ),
        ColumnFamilyDesign(
            name="temp",
            max_versions=1,
            ttl=0,
            compression=CompressionType.NONE,
            bloom_filter=BloomFilterType.NONE
        )
    ],
    estimated_rows=50000000,
    estimated_size_gb=200,
    read_write_ratio="write_heavy"
)

print(f"  表名: {original_table.table_name}")
print(f"  行键模式: {original_table.row_key_pattern.value}")
print(f"  列族数量: {len(original_table.column_families)}")
print(f"  预估大小: {original_table.estimated_size_gb}GB")
print(f"  读写模式: {original_table.read_write_ratio}")

print("\n2. 分析表设计问题:")
recommendations = optimizer.analyze_table_design(original_table)
for i, rec in enumerate(recommendations, 1):
    print(f"  {i}. [{rec.category}] {rec.title}")
    print(f"     问题: {rec.current_issue}")
    print(f"     建议: {rec.suggested_change}")
    print(f"     收益: {rec.expected_benefit}")
    print(f"     复杂度: {rec.implementation_complexity}, 风险: {rec.risk_level}")

print("\n3. 生成优化后的表设计:")
optimized_table = optimizer.generate_optimized_table_design(original_table)
print(f"  优化后表名: {optimized_table.table_name}")
print(f"  行键模式: {optimized_table.row_key_pattern.value}")
print(f"  列族数量: {len(optimized_table.column_families)}")
print("  列族优化:")
for cf in optimized_table.column_families:
    print(f"    {cf.name}: 版本数={cf.max_versions}, TTL={cf.ttl}s, 压缩={cf.compression.value}")

print("\n4. 行键设计示例:")
print("  原始行键 (顺序):")
original_keys = optimizer.generate_rowkey_examples(RowKeyDesignPattern.SEQUENTIAL, "user", 3)
for key in original_keys:
    print(f"    {key}")

print("  优化行键 (哈希前缀):")
optimized_keys = optimizer.generate_rowkey_examples(RowKeyDesignPattern.HASH_PREFIX, "user", 3)
for key in optimized_keys:
    print(f"    {key}")

print("\n5. 性能影响评估:")
impact = optimizer.estimate_performance_impact(original_table, optimized_table)
print(f"  存储空间减少: {impact['storage_reduction_percentage']:.1f}%")
print(f"  读性能提升: {impact['read_performance_improvement']:.1f}%")
print(f"  写性能提升: {impact['write_performance_improvement']:.1f}%")
print(f"  压缩收益: {impact['compression_benefit']:.1f}%")
print(f"  缓存效率提升: {impact['cache_efficiency_improvement']:.1f}%")

2.3 JVM调优

from enum import Enum
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Any, Tuple
import re

class GCAlgorithm(Enum):
    """GC算法枚举"""
    G1GC = "G1GC"
    CMS = "ConcurrentMarkSweep"
    PARALLEL = "Parallel"
    ZGC = "ZGC"
    SHENANDOAH = "Shenandoah"

class JVMParameter(Enum):
    """JVM参数枚举"""
    HEAP_SIZE = "heap_size"
    NEW_RATIO = "new_ratio"
    GC_ALGORITHM = "gc_algorithm"
    GC_THREADS = "gc_threads"
    OFFHEAP_SIZE = "offheap_size"
    DIRECT_MEMORY = "direct_memory"
    METASPACE_SIZE = "metaspace_size"

@dataclass
class JVMConfig:
    """JVM配置数据类"""
    heap_size_gb: int = 8
    new_ratio: int = 3  # Old:Young = 3:1
    gc_algorithm: GCAlgorithm = GCAlgorithm.G1GC
    gc_threads: int = 0  # 0表示自动
    offheap_size_gb: int = 4
    direct_memory_gb: int = 2
    metaspace_size_mb: int = 256
    gc_log_enabled: bool = True
    gc_log_rotation: bool = True
    oom_dump_enabled: bool = True
    jmx_enabled: bool = True
    jmx_port: int = 9999
    custom_options: List[str] = field(default_factory=list)

@dataclass
class GCMetrics:
    """GC指标数据类"""
    young_gc_count: int = 0
    young_gc_time_ms: float = 0.0
    old_gc_count: int = 0
    old_gc_time_ms: float = 0.0
    total_gc_time_ms: float = 0.0
    heap_used_mb: float = 0.0
    heap_max_mb: float = 0.0
    heap_utilization: float = 0.0
    gc_overhead_percentage: float = 0.0
    avg_gc_pause_ms: float = 0.0
    max_gc_pause_ms: float = 0.0

@dataclass
class JVMTuningRecommendation:
    """JVM调优建议数据类"""
    recommendation_id: str
    category: str
    title: str
    description: str
    current_config: str
    recommended_config: str
    expected_benefit: str
    risk_level: str
    priority: str

class HBaseJVMTuner:
    """HBase JVM调优器"""
    
    def __init__(self):
        self.current_config = JVMConfig()
        self.gc_metrics_history: List[GCMetrics] = []
        self.tuning_recommendations: List[JVMTuningRecommendation] = []
    
    def analyze_gc_performance(self, gc_metrics: GCMetrics) -> Dict[str, Any]:
        """分析GC性能"""
        analysis = {
            "overall_score": 100.0,
            "issues": [],
            "recommendations": [],
            "metrics_summary": {}
        }
        
        # 分析GC开销
        if gc_metrics.gc_overhead_percentage > 5.0:
            analysis["overall_score"] -= 20
            analysis["issues"].append(f"GC开销过高: {gc_metrics.gc_overhead_percentage:.1f}%")
            analysis["recommendations"].append("gc_overhead_001")
        
        # 分析GC暂停时间
        if gc_metrics.avg_gc_pause_ms > 100:
            analysis["overall_score"] -= 15
            analysis["issues"].append(f"平均GC暂停时间过长: {gc_metrics.avg_gc_pause_ms:.1f}ms")
            analysis["recommendations"].append("gc_pause_001")
        
        if gc_metrics.max_gc_pause_ms > 500:
            analysis["overall_score"] -= 25
            analysis["issues"].append(f"最大GC暂停时间过长: {gc_metrics.max_gc_pause_ms:.1f}ms")
            analysis["recommendations"].append("gc_pause_002")
        
        # 分析堆内存使用
        if gc_metrics.heap_utilization > 85:
            analysis["overall_score"] -= 20
            analysis["issues"].append(f"堆内存使用率过高: {gc_metrics.heap_utilization:.1f}%")
            analysis["recommendations"].append("heap_usage_001")
        
        # 分析GC频率
        total_gc_count = gc_metrics.young_gc_count + gc_metrics.old_gc_count
        if total_gc_count > 1000:  # 假设这是每小时的统计
            analysis["overall_score"] -= 10
            analysis["issues"].append(f"GC频率过高: {total_gc_count} 次/小时")
            analysis["recommendations"].append("gc_frequency_001")
        
        # Old GC频率检查
        if gc_metrics.old_gc_count > 10:  # 每小时超过10次Old GC
            analysis["overall_score"] -= 15
            analysis["issues"].append(f"Old GC频率过高: {gc_metrics.old_gc_count} 次/小时")
            analysis["recommendations"].append("old_gc_001")
        
        analysis["metrics_summary"] = {
            "gc_overhead": f"{gc_metrics.gc_overhead_percentage:.1f}%",
            "avg_pause": f"{gc_metrics.avg_gc_pause_ms:.1f}ms",
            "max_pause": f"{gc_metrics.max_gc_pause_ms:.1f}ms",
            "heap_usage": f"{gc_metrics.heap_utilization:.1f}%",
            "young_gc_rate": f"{gc_metrics.young_gc_count}/hour",
            "old_gc_rate": f"{gc_metrics.old_gc_count}/hour"
        }
        
        return analysis
    
    def generate_jvm_recommendations(self, gc_analysis: Dict[str, Any], 
                                   system_memory_gb: int = 32) -> List[JVMTuningRecommendation]:
        """生成JVM调优建议"""
        recommendations = []
        
        # 堆内存大小建议
        if "heap_usage_001" in gc_analysis["recommendations"]:
            current_heap = self.current_config.heap_size_gb
            recommended_heap = min(current_heap + 4, system_memory_gb // 2)
            
            recommendations.append(JVMTuningRecommendation(
                recommendation_id="heap_size_001",
                category="内存配置",
                title="增加堆内存大小",
                description="当前堆内存使用率过高,建议增加堆内存",
                current_config=f"-Xmx{current_heap}g -Xms{current_heap}g",
                recommended_config=f"-Xmx{recommended_heap}g -Xms{recommended_heap}g",
                expected_benefit="减少GC频率,提升性能",
                risk_level="low",
                priority="high"
            ))
        
        # GC算法建议
        if "gc_pause_001" in gc_analysis["recommendations"] or "gc_pause_002" in gc_analysis["recommendations"]:
            if self.current_config.gc_algorithm != GCAlgorithm.G1GC:
                recommendations.append(JVMTuningRecommendation(
                    recommendation_id="gc_algorithm_001",
                    category="GC配置",
                    title="切换到G1GC",
                    description="G1GC在大堆内存下有更好的暂停时间控制",
                    current_config=f"-XX:+Use{self.current_config.gc_algorithm.value}GC",
                    recommended_config="-XX:+UseG1GC",
                    expected_benefit="减少GC暂停时间,提升响应性",
                    risk_level="medium",
                    priority="high"
                ))
        
        # G1GC特定优化
        if self.current_config.gc_algorithm == GCAlgorithm.G1GC:
            recommendations.append(JVMTuningRecommendation(
                recommendation_id="g1gc_001",
                category="GC配置",
                title="优化G1GC参数",
                description="针对HBase工作负载优化G1GC参数",
                current_config="默认G1GC配置",
                recommended_config="-XX:MaxGCPauseMillis=50 -XX:G1HeapRegionSize=16m -XX:G1NewSizePercent=20",
                expected_benefit="更好的GC性能和暂停时间控制",
                risk_level="low",
                priority="medium"
            ))
        
        # 堆外内存建议
        if self.current_config.offheap_size_gb < 4:
            recommendations.append(JVMTuningRecommendation(
                recommendation_id="offheap_001",
                category="内存配置",
                title="增加堆外内存",
                description="HBase可以利用堆外内存提升性能",
                current_config=f"HBASE_OFFHEAPSIZE={self.current_config.offheap_size_gb}g",
                recommended_config="HBASE_OFFHEAPSIZE=4g",
                expected_benefit="减少GC压力,提升缓存性能",
                risk_level="low",
                priority="medium"
            ))
        
        # GC日志建议
        if not self.current_config.gc_log_enabled:
            recommendations.append(JVMTuningRecommendation(
                recommendation_id="gc_log_001",
                category="监控配置",
                title="启用GC日志",
                description="GC日志对性能调优和问题诊断非常重要",
                current_config="未启用GC日志",
                recommended_config="-Xloggc:gc.log -XX:+PrintGCDetails -XX:+PrintGCTimeStamps",
                expected_benefit="便于性能监控和问题诊断",
                risk_level="low",
                priority="high"
            ))
        
        return recommendations
    
    def generate_jvm_startup_script(self, config: JVMConfig = None) -> str:
        """生成JVM启动脚本"""
        if config is None:
            config = self.current_config
        
        script_lines = [
            "#!/bin/bash",
            "# HBase JVM Configuration",
            "",
            "# Memory Settings",
            f"export HBASE_HEAPSIZE={config.heap_size_gb}G",
            f"export HBASE_OFFHEAPSIZE={config.offheap_size_gb}G",
            "",
            "# JVM Options",
            "export HBASE_OPTS=\"$HBASE_OPTS -server\"",
            f"export HBASE_OPTS=\"$HBASE_OPTS -Xms{config.heap_size_gb}g\"",
            f"export HBASE_OPTS=\"$HBASE_OPTS -Xmx{config.heap_size_gb}g\"",
            f"export HBASE_OPTS=\"$HBASE_OPTS -XX:MaxDirectMemorySize={config.direct_memory_gb}g\"",
            f"export HBASE_OPTS=\"$HBASE_OPTS -XX:MetaspaceSize={config.metaspace_size_mb}m\"",
            ""
        ]
        
        # GC配置
        if config.gc_algorithm == GCAlgorithm.G1GC:
            script_lines.extend([
                "# G1GC Configuration",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:+UseG1GC\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:MaxGCPauseMillis=50\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:G1HeapRegionSize=16m\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:G1NewSizePercent=20\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:G1MaxNewSizePercent=30\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:+G1UseAdaptiveIHOP\"",
                ""
            ])
        elif config.gc_algorithm == GCAlgorithm.CMS:
            script_lines.extend([
                "# CMS Configuration",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:+UseConcMarkSweepGC\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:+CMSParallelRemarkEnabled\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:CMSInitiatingOccupancyFraction=70\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:+UseCMSInitiatingOccupancyOnly\"",
                ""
            ])
        
        # GC日志配置
        if config.gc_log_enabled:
            script_lines.extend([
                "# GC Logging",
                "export HBASE_OPTS=\"$HBASE_OPTS -Xloggc:$HBASE_LOG_DIR/gc-$(hostname)-$(date +%Y%m%d%H%M).log\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:+PrintGCDetails\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:+PrintGCTimeStamps\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:+PrintGCApplicationStoppedTime\""
            ])
            
            if config.gc_log_rotation:
                script_lines.extend([
                    "export HBASE_OPTS=\"$HBASE_OPTS -XX:+UseGCLogFileRotation\"",
                    "export HBASE_OPTS=\"$HBASE_OPTS -XX:NumberOfGCLogFiles=10\"",
                    "export HBASE_OPTS=\"$HBASE_OPTS -XX:GCLogFileSize=10M\""
                ])
            
            script_lines.append("")
        
        # OOM处理
        if config.oom_dump_enabled:
            script_lines.extend([
                "# OOM Handling",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:+HeapDumpOnOutOfMemoryError\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:HeapDumpPath=$HBASE_LOG_DIR/\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -XX:OnOutOfMemoryError='kill -9 %p'\"",
                ""
            ])
        
        # JMX配置
        if config.jmx_enabled:
            script_lines.extend([
                "# JMX Configuration",
                f"export HBASE_OPTS=\"$HBASE_OPTS -Dcom.sun.management.jmxremote.port={config.jmx_port}\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -Dcom.sun.management.jmxremote.authenticate=false\"",
                "export HBASE_OPTS=\"$HBASE_OPTS -Dcom.sun.management.jmxremote.ssl=false\"",
                ""
            ])
        
        # 自定义选项
        if config.custom_options:
            script_lines.extend([
                "# Custom Options"
            ])
            for option in config.custom_options:
                script_lines.append(f"export HBASE_OPTS=\"$HBASE_OPTS {option}\"")
            script_lines.append("")
        
        script_lines.extend([
            "# Performance Tuning",
            "export HBASE_OPTS=\"$HBASE_OPTS -XX:+AggressiveOpts\"",
            "export HBASE_OPTS=\"$HBASE_OPTS -XX:+UseFastAccessorMethods\"",
            "export HBASE_OPTS=\"$HBASE_OPTS -XX:+OptimizeStringConcat\"",
            "export HBASE_OPTS=\"$HBASE_OPTS -XX:+UseBiasedLocking\"",
            "",
            "echo \"HBase JVM configuration loaded\"",
            "echo \"Heap Size: ${HBASE_HEAPSIZE}\"",
            "echo \"Off-heap Size: ${HBASE_OFFHEAPSIZE}\"",
            "echo \"GC Algorithm: G1GC\""
        ])
        
        return "\n".join(script_lines)
    
    def simulate_gc_metrics(self, config: JVMConfig, workload_type: str = "balanced") -> GCMetrics:
        """模拟GC指标"""
        # 根据配置和工作负载模拟GC指标
        base_young_gc = 100
        base_old_gc = 5
        base_pause_ms = 30
        
        # 根据堆大小调整
        heap_factor = config.heap_size_gb / 8.0
        
        # 根据GC算法调整
        if config.gc_algorithm == GCAlgorithm.G1GC:
            pause_multiplier = 0.8
            frequency_multiplier = 0.9
        elif config.gc_algorithm == GCAlgorithm.CMS:
            pause_multiplier = 1.2
            frequency_multiplier = 1.1
        else:
            pause_multiplier = 1.5
            frequency_multiplier = 1.3
        
        # 根据工作负载调整
        if workload_type == "write_heavy":
            young_gc_multiplier = 1.5
            old_gc_multiplier = 1.3
        elif workload_type == "read_heavy":
            young_gc_multiplier = 0.8
            old_gc_multiplier = 0.7
        else:  # balanced
            young_gc_multiplier = 1.0
            old_gc_multiplier = 1.0
        
        young_gc_count = int(base_young_gc * frequency_multiplier * young_gc_multiplier / heap_factor)
        old_gc_count = int(base_old_gc * frequency_multiplier * old_gc_multiplier / heap_factor)
        
        young_gc_time = young_gc_count * base_pause_ms * pause_multiplier * 0.5
        old_gc_time = old_gc_count * base_pause_ms * pause_multiplier * 3.0
        
        total_gc_time = young_gc_time + old_gc_time
        
        # 计算堆使用率
        heap_used = config.heap_size_gb * 1024 * random.uniform(0.6, 0.85)
        heap_max = config.heap_size_gb * 1024
        
        return GCMetrics(
            young_gc_count=young_gc_count,
            young_gc_time_ms=young_gc_time,
            old_gc_count=old_gc_count,
            old_gc_time_ms=old_gc_time,
            total_gc_time_ms=total_gc_time,
            heap_used_mb=heap_used,
            heap_max_mb=heap_max,
            heap_utilization=(heap_used / heap_max) * 100,
            gc_overhead_percentage=(total_gc_time / 3600000) * 100,  # 假设1小时统计
            avg_gc_pause_ms=total_gc_time / (young_gc_count + old_gc_count) if (young_gc_count + old_gc_count) > 0 else 0,
            max_gc_pause_ms=base_pause_ms * pause_multiplier * 5
        )

# JVM调优示例
print("\n=== HBase JVM调优示例 ===")

# 创建JVM调优器
jvm_tuner = HBaseJVMTuner()

print("1. 当前JVM配置:")
current_config = jvm_tuner.current_config
print(f"  堆内存: {current_config.heap_size_gb}GB")
print(f"  堆外内存: {current_config.offheap_size_gb}GB")
print(f"  GC算法: {current_config.gc_algorithm.value}")
print(f"  新生代比例: 1:{current_config.new_ratio}")
print(f"  GC日志: {'启用' if current_config.gc_log_enabled else '禁用'}")

print("\n2. 模拟GC性能指标:")
gc_metrics = jvm_tuner.simulate_gc_metrics(current_config, "write_heavy")
print(f"  Young GC: {gc_metrics.young_gc_count} 次/小时, 总时间: {gc_metrics.young_gc_time_ms:.0f}ms")
print(f"  Old GC: {gc_metrics.old_gc_count} 次/小时, 总时间: {gc_metrics.old_gc_time_ms:.0f}ms")
print(f"  平均暂停时间: {gc_metrics.avg_gc_pause_ms:.1f}ms")
print(f"  最大暂停时间: {gc_metrics.max_gc_pause_ms:.1f}ms")
print(f"  堆使用率: {gc_metrics.heap_utilization:.1f}%")
print(f"  GC开销: {gc_metrics.gc_overhead_percentage:.2f}%")

print("\n3. GC性能分析:")
gc_analysis = jvm_tuner.analyze_gc_performance(gc_metrics)
print(f"  总体评分: {gc_analysis['overall_score']:.1f}/100")
if gc_analysis['issues']:
    print("  发现问题:")
    for issue in gc_analysis['issues']:
        print(f"    - {issue}")
else:
    print("  ✅ GC性能良好")

print("\n4. JVM调优建议:")
recommendations = jvm_tuner.generate_jvm_recommendations(gc_analysis, system_memory_gb=32)
for i, rec in enumerate(recommendations, 1):
    print(f"  {i}. [{rec.category}] {rec.title}")
    print(f"     当前配置: {rec.current_config}")
    print(f"     建议配置: {rec.recommended_config}")
    print(f"     预期收益: {rec.expected_benefit}")
    print(f"     优先级: {rec.priority}, 风险: {rec.risk_level}")

print("\n5. 生成优化后的启动脚本:")
# 应用一些建议创建优化配置
optimized_config = JVMConfig(
    heap_size_gb=12,  # 增加堆内存
    gc_algorithm=GCAlgorithm.G1GC,
    offheap_size_gb=4,
    gc_log_enabled=True,
    gc_log_rotation=True,
    oom_dump_enabled=True,
    jmx_enabled=True,
    custom_options=[
        "-XX:MaxGCPauseMillis=50",
        "-XX:G1HeapRegionSize=16m",
        "-XX:G1NewSizePercent=20"
    ]
)

startup_script = jvm_tuner.generate_jvm_startup_script(optimized_config)
print("  启动脚本 (部分内容):")
script_lines = startup_script.split("\n")
for line in script_lines[:20]:
    print(f"  {line}")
print("  ...")

print("\n6. 优化后性能预测:")
optimized_metrics = jvm_tuner.simulate_gc_metrics(optimized_config, "write_heavy")
print(f"  优化前 - GC开销: {gc_metrics.gc_overhead_percentage:.2f}%, 平均暂停: {gc_metrics.avg_gc_pause_ms:.1f}ms")
print(f"  优化后 - GC开销: {optimized_metrics.gc_overhead_percentage:.2f}%, 平均暂停: {optimized_metrics.avg_gc_pause_ms:.1f}ms")
print(f"  性能提升: GC开销减少 {gc_metrics.gc_overhead_percentage - optimized_metrics.gc_overhead_percentage:.2f}%")
print(f"           暂停时间减少 {gc_metrics.avg_gc_pause_ms - optimized_metrics.avg_gc_pause_ms:.1f}ms")

3. 缓存优化

3.1 BlockCache优化

from enum import Enum
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Any, Tuple
import time
import random

class CacheType(Enum):
    """缓存类型枚举"""
    LRUBLOCKCACHE = "LruBlockCache"
    BUCKETCACHE = "BucketCache"
    COMBINEDCACHE = "CombinedBlockCache"
    OFFHEAPCACHE = "OffHeapCache"

class BlockType(Enum):
    """块类型枚举"""
    DATA = "DATA"
    INDEX = "INDEX"
    BLOOM = "BLOOM"
    META = "META"
    INTERMEDIATE_INDEX = "INTERMEDIATE_INDEX"
    LEAF_INDEX = "LEAF_INDEX"
    ROOT_INDEX = "ROOT_INDEX"

class CachePriority(Enum):
    """缓存优先级枚举"""
    SINGLE = "SINGLE"
    MULTI = "MULTI"
    MEMORY = "MEMORY"

@dataclass
class CacheConfig:
    """缓存配置数据类"""
    cache_type: CacheType = CacheType.LRUBLOCKCACHE
    heap_cache_size_mb: int = 1024  # 堆内缓存大小
    offheap_cache_size_mb: int = 2048  # 堆外缓存大小
    bucket_cache_size_mb: int = 0  # BucketCache大小
    block_size: int = 65536  # 64KB
    cache_data_on_read: bool = True
    cache_data_on_write: bool = False
    cache_indexes_on_write: bool = True
    cache_blooms_on_write: bool = True
    prefetch_on_open: bool = False
    drop_behind_reads: bool = False
    drop_behind_writes: bool = False
    cache_data_in_l1: bool = True
    evict_on_close: bool = False

@dataclass
class CacheMetrics:
    """缓存指标数据类"""
    hit_count: int = 0
    miss_count: int = 0
    hit_ratio: float = 0.0
    eviction_count: int = 0
    cached_data_size_mb: float = 0.0
    free_size_mb: float = 0.0
    cache_capacity_mb: float = 0.0
    cache_utilization: float = 0.0
    avg_load_time_ms: float = 0.0
    block_count_by_type: Dict[str, int] = field(default_factory=dict)
    hit_ratio_by_type: Dict[str, float] = field(default_factory=dict)

@dataclass
class CacheOptimizationRecommendation:
    """缓存优化建议数据类"""
    recommendation_id: str
    category: str
    title: str
    description: str
    current_config: str
    recommended_config: str
    expected_benefit: str
    implementation_complexity: str
    priority: str

class HBaseCacheOptimizer:
    """HBase缓存优化器"""
    
    def __init__(self):
        self.cache_config = CacheConfig()
        self.cache_metrics_history: List[CacheMetrics] = []
        self.optimization_recommendations: List[CacheOptimizationRecommendation] = []
    
    def analyze_cache_performance(self, metrics: CacheMetrics) -> Dict[str, Any]:
        """分析缓存性能"""
        analysis = {
            "overall_score": 100.0,
            "issues": [],
            "recommendations": [],
            "performance_summary": {}
        }
        
        # 分析命中率
        if metrics.hit_ratio < 0.8:
            analysis["overall_score"] -= 25
            analysis["issues"].append(f"缓存命中率过低: {metrics.hit_ratio:.1%}")
            analysis["recommendations"].append("hit_ratio_001")
        elif metrics.hit_ratio < 0.9:
            analysis["overall_score"] -= 10
            analysis["issues"].append(f"缓存命中率偏低: {metrics.hit_ratio:.1%}")
            analysis["recommendations"].append("hit_ratio_002")
        
        # 分析缓存利用率
        if metrics.cache_utilization > 95:
            analysis["overall_score"] -= 20
            analysis["issues"].append(f"缓存利用率过高: {metrics.cache_utilization:.1f}%")
            analysis["recommendations"].append("cache_size_001")
        elif metrics.cache_utilization < 50:
            analysis["overall_score"] -= 5
            analysis["issues"].append(f"缓存利用率过低: {metrics.cache_utilization:.1f}%")
            analysis["recommendations"].append("cache_size_002")
        
        # 分析驱逐频率
        total_operations = metrics.hit_count + metrics.miss_count
        if total_operations > 0:
            eviction_ratio = metrics.eviction_count / total_operations
            if eviction_ratio > 0.1:
                analysis["overall_score"] -= 15
                analysis["issues"].append(f"缓存驱逐频率过高: {eviction_ratio:.1%}")
                analysis["recommendations"].append("eviction_001")
        
        # 分析加载时间
        if metrics.avg_load_time_ms > 10:
            analysis["overall_score"] -= 10
            analysis["issues"].append(f"平均加载时间过长: {metrics.avg_load_time_ms:.1f}ms")
            analysis["recommendations"].append("load_time_001")
        
        # 分析不同类型块的命中率
        for block_type, hit_ratio in metrics.hit_ratio_by_type.items():
            if block_type == "DATA" and hit_ratio < 0.7:
                analysis["issues"].append(f"数据块命中率过低: {hit_ratio:.1%}")
                analysis["recommendations"].append("data_cache_001")
            elif block_type == "INDEX" and hit_ratio < 0.9:
                analysis["issues"].append(f"索引块命中率过低: {hit_ratio:.1%}")
                analysis["recommendations"].append("index_cache_001")
        
        analysis["performance_summary"] = {
            "hit_ratio": f"{metrics.hit_ratio:.1%}",
            "cache_utilization": f"{metrics.cache_utilization:.1f}%",
            "eviction_rate": f"{metrics.eviction_count}/{total_operations if total_operations > 0 else 1}",
            "avg_load_time": f"{metrics.avg_load_time_ms:.1f}ms",
            "cached_size": f"{metrics.cached_data_size_mb:.1f}MB"
        }
        
        return analysis
    
    def generate_cache_recommendations(self, analysis: Dict[str, Any], 
                                     system_memory_gb: int = 32) -> List[CacheOptimizationRecommendation]:
        """生成缓存优化建议"""
        recommendations = []
        
        # 命中率优化建议
        if "hit_ratio_001" in analysis["recommendations"]:
            recommendations.append(CacheOptimizationRecommendation(
                recommendation_id="cache_size_increase",
                category="缓存大小",
                title="增加缓存大小",
                description="命中率过低,建议增加缓存大小",
                current_config=f"hbase.bucketcache.size={self.cache_config.heap_cache_size_mb}MB",
                recommended_config=f"hbase.bucketcache.size={self.cache_config.heap_cache_size_mb * 2}MB",
                expected_benefit="提升缓存命中率,减少磁盘IO",
                implementation_complexity="low",
                priority="high"
            ))
        
        # 缓存类型优化
        if self.cache_config.cache_type == CacheType.LRUBLOCKCACHE and system_memory_gb >= 16:
            recommendations.append(CacheOptimizationRecommendation(
                recommendation_id="cache_type_upgrade",
                category="缓存类型",
                title="升级到BucketCache",
                description="大内存环境建议使用BucketCache",
                current_config="hbase.blockcache.use.bucketcache=false",
                recommended_config="hbase.blockcache.use.bucketcache=true",
                expected_benefit="减少GC压力,提升缓存性能",
                implementation_complexity="medium",
                priority="high"
            ))
        
        # 堆外缓存建议
        if "cache_size_001" in analysis["recommendations"]:
            recommendations.append(CacheOptimizationRecommendation(
                recommendation_id="offheap_cache",
                category="堆外缓存",
                title="启用堆外缓存",
                description="使用堆外内存扩展缓存容量",
                current_config="hbase.bucketcache.ioengine=heap",
                recommended_config="hbase.bucketcache.ioengine=offheap",
                expected_benefit="扩展缓存容量,减少GC影响",
                implementation_complexity="medium",
                priority="medium"
            ))
        
        # 预取优化
        if "load_time_001" in analysis["recommendations"]:
            recommendations.append(CacheOptimizationRecommendation(
                recommendation_id="prefetch_enable",
                category="预取优化",
                title="启用块预取",
                description="启用预取可以减少读取延迟",
                current_config="hbase.rs.prefetchblocksonopen=false",
                recommended_config="hbase.rs.prefetchblocksonopen=true",
                expected_benefit="减少首次读取延迟",
                implementation_complexity="low",
                priority="medium"
            ))
        
        # 缓存策略优化
        if "data_cache_001" in analysis["recommendations"]:
            recommendations.append(CacheOptimizationRecommendation(
                recommendation_id="cache_strategy",
                category="缓存策略",
                title="优化缓存策略",
                description="针对数据访问模式优化缓存策略",
                current_config="默认缓存策略",
                recommended_config="启用写时缓存数据块",
                expected_benefit="提升数据块命中率",
                implementation_complexity="low",
                priority="medium"
            ))
        
        return recommendations
    
    def generate_cache_config(self, optimized_config: CacheConfig = None) -> Dict[str, str]:
        """生成缓存配置"""
        if optimized_config is None:
            optimized_config = self.cache_config
        
        config = {}
        
        # 基础缓存配置
        if optimized_config.cache_type == CacheType.BUCKETCACHE:
            config["hbase.blockcache.use.bucketcache"] = "true"
            config["hbase.bucketcache.ioengine"] = "offheap"
            config["hbase.bucketcache.size"] = f"{optimized_config.offheap_cache_size_mb}"
            config["hbase.blockcache.size"] = "0.2"  # 20% heap for L1 cache
        elif optimized_config.cache_type == CacheType.COMBINEDCACHE:
            config["hbase.blockcache.use.bucketcache"] = "true"
            config["hbase.bucketcache.ioengine"] = "heap"
            config["hbase.bucketcache.size"] = f"{optimized_config.bucket_cache_size_mb}"
            config["hbase.blockcache.size"] = "0.25"
        else:  # LRU BlockCache
            config["hbase.blockcache.use.bucketcache"] = "false"
            config["hbase.blockcache.size"] = "0.4"  # 40% of heap
        
        # 缓存行为配置
        config["hbase.rs.cacheblocksonwrite"] = str(optimized_config.cache_data_on_write).lower()
        config["hbase.rs.cacheindexesonwrite"] = str(optimized_config.cache_indexes_on_write).lower()
        config["hbase.rs.cachebloomsonwrite"] = str(optimized_config.cache_blooms_on_write).lower()
        config["hbase.rs.prefetchblocksonopen"] = str(optimized_config.prefetch_on_open).lower()
        config["hbase.rs.drop.behind.reads"] = str(optimized_config.drop_behind_reads).lower()
        config["hbase.rs.drop.behind.writes"] = str(optimized_config.drop_behind_writes).lower()
        config["hbase.rs.evictblocksonclose"] = str(optimized_config.evict_on_close).lower()
        
        # 块大小配置
        config["hbase.regionserver.global.memstore.size"] = "0.4"
        config["hbase.regionserver.global.memstore.size.lower.limit"] = "0.38"
        
        return config
    
    def simulate_cache_metrics(self, config: CacheConfig, 
                             workload_pattern: str = "random") -> CacheMetrics:
        """模拟缓存指标"""
        # 基础指标
        base_operations = 10000
        
        # 根据缓存类型调整命中率
        if config.cache_type == CacheType.BUCKETCACHE:
            base_hit_ratio = 0.85
        elif config.cache_type == CacheType.COMBINEDCACHE:
            base_hit_ratio = 0.88
        else:
            base_hit_ratio = 0.80
        
        # 根据工作负载模式调整
        if workload_pattern == "sequential":
            hit_ratio_multiplier = 1.1
        elif workload_pattern == "random":
            hit_ratio_multiplier = 1.0
        else:  # mixed
            hit_ratio_multiplier = 1.05
        
        # 根据缓存大小调整
        total_cache_size = config.heap_cache_size_mb + config.offheap_cache_size_mb + config.bucket_cache_size_mb
        size_factor = min(total_cache_size / 2048, 2.0)  # 2GB基准
        
        final_hit_ratio = min(base_hit_ratio * hit_ratio_multiplier * (1 + size_factor * 0.1), 0.95)
        
        hit_count = int(base_operations * final_hit_ratio)
        miss_count = base_operations - hit_count
        
        # 计算其他指标
        eviction_count = int(base_operations * 0.05 * (2.0 - size_factor))
        cached_size = total_cache_size * random.uniform(0.7, 0.9)
        free_size = total_cache_size - cached_size
        utilization = (cached_size / total_cache_size) * 100
        
        # 不同类型块的命中率
        hit_ratio_by_type = {
            "DATA": final_hit_ratio * 0.9,
            "INDEX": final_hit_ratio * 1.1,
            "BLOOM": final_hit_ratio * 1.05,
            "META": final_hit_ratio * 1.15
        }
        
        # 块数量统计
        block_count_by_type = {
            "DATA": int(cached_size * 0.7 / 64),  # 假设64KB块
            "INDEX": int(cached_size * 0.2 / 64),
            "BLOOM": int(cached_size * 0.08 / 64),
            "META": int(cached_size * 0.02 / 64)
        }
        
        return CacheMetrics(
            hit_count=hit_count,
            miss_count=miss_count,
            hit_ratio=final_hit_ratio,
            eviction_count=eviction_count,
            cached_data_size_mb=cached_size,
            free_size_mb=free_size,
            cache_capacity_mb=total_cache_size,
            cache_utilization=utilization,
            avg_load_time_ms=random.uniform(5, 15) / size_factor,
            block_count_by_type=block_count_by_type,
            hit_ratio_by_type=hit_ratio_by_type
        )
    
    def estimate_cache_performance_impact(self, original_config: CacheConfig, 
                                        optimized_config: CacheConfig) -> Dict[str, float]:
        """估算缓存性能影响"""
        original_metrics = self.simulate_cache_metrics(original_config)
        optimized_metrics = self.simulate_cache_metrics(optimized_config)
        
        impact = {
            "hit_ratio_improvement": (optimized_metrics.hit_ratio - original_metrics.hit_ratio) * 100,
            "cache_capacity_increase": ((optimized_config.heap_cache_size_mb + optimized_config.offheap_cache_size_mb + optimized_config.bucket_cache_size_mb) - 
                                      (original_config.heap_cache_size_mb + original_config.offheap_cache_size_mb + original_config.bucket_cache_size_mb)) / 
                                     (original_config.heap_cache_size_mb + original_config.offheap_cache_size_mb + original_config.bucket_cache_size_mb) * 100,
            "load_time_reduction": (original_metrics.avg_load_time_ms - optimized_metrics.avg_load_time_ms) / original_metrics.avg_load_time_ms * 100,
            "eviction_reduction": (original_metrics.eviction_count - optimized_metrics.eviction_count) / original_metrics.eviction_count * 100 if original_metrics.eviction_count > 0 else 0
        }
        
        return impact

# 缓存优化示例
print("\n=== HBase缓存优化示例 ===")

# 创建缓存优化器
cache_optimizer = HBaseCacheOptimizer()

print("1. 当前缓存配置:")
current_cache_config = cache_optimizer.cache_config
print(f"  缓存类型: {current_cache_config.cache_type.value}")
print(f"  堆内缓存: {current_cache_config.heap_cache_size_mb}MB")
print(f"  堆外缓存: {current_cache_config.offheap_cache_size_mb}MB")
print(f"  写时缓存数据: {current_cache_config.cache_data_on_write}")
print(f"  预取开启: {current_cache_config.prefetch_on_open}")

print("\n2. 模拟缓存性能指标:")
cache_metrics = cache_optimizer.simulate_cache_metrics(current_cache_config, "random")
print(f"  缓存命中率: {cache_metrics.hit_ratio:.1%}")
print(f"  缓存利用率: {cache_metrics.cache_utilization:.1f}%")
print(f"  命中次数: {cache_metrics.hit_count:,}")
print(f"  未命中次数: {cache_metrics.miss_count:,}")
print(f"  驱逐次数: {cache_metrics.eviction_count:,}")
print(f"  平均加载时间: {cache_metrics.avg_load_time_ms:.1f}ms")
print(f"  已缓存数据: {cache_metrics.cached_data_size_mb:.1f}MB")

print("\n3. 不同类型块的命中率:")
for block_type, hit_ratio in cache_metrics.hit_ratio_by_type.items():
    count = cache_metrics.block_count_by_type.get(block_type, 0)
    print(f"  {block_type}: {hit_ratio:.1%} (块数: {count:,})")

print("\n4. 缓存性能分析:")
cache_analysis = cache_optimizer.analyze_cache_performance(cache_metrics)
print(f"  总体评分: {cache_analysis['overall_score']:.1f}/100")
if cache_analysis['issues']:
    print("  发现问题:")
    for issue in cache_analysis['issues']:
        print(f"    - {issue}")
else:
    print("  ✅ 缓存性能良好")

print("\n5. 缓存优化建议:")
cache_recommendations = cache_optimizer.generate_cache_recommendations(cache_analysis, system_memory_gb=32)
for i, rec in enumerate(cache_recommendations, 1):
    print(f"  {i}. [{rec.category}] {rec.title}")
    print(f"     当前配置: {rec.current_config}")
    print(f"     建议配置: {rec.recommended_config}")
    print(f"     预期收益: {rec.expected_benefit}")
    print(f"     优先级: {rec.priority}")

print("\n6. 生成优化后的缓存配置:")
# 创建优化配置
optimized_cache_config = CacheConfig(
    cache_type=CacheType.BUCKETCACHE,
    heap_cache_size_mb=512,  # L1缓存
    offheap_cache_size_mb=4096,  # 堆外缓存
    cache_data_on_write=True,
    prefetch_on_open=True,
    cache_data_in_l1=True
)

config_dict = cache_optimizer.generate_cache_config(optimized_cache_config)
print("  HBase配置参数:")
for key, value in config_dict.items():
    print(f"    {key} = {value}")

print("\n7. 性能影响评估:")
performance_impact = cache_optimizer.estimate_cache_performance_impact(current_cache_config, optimized_cache_config)
print(f"  命中率提升: {performance_impact['hit_ratio_improvement']:.1f}%")
print(f"  缓存容量增加: {performance_impact['cache_capacity_increase']:.1f}%")
print(f"  加载时间减少: {performance_impact['load_time_reduction']:.1f}%")
print(f"  驱逐次数减少: {performance_impact['eviction_reduction']:.1f}%")

4. 网络优化

4.1 网络配置优化

from enum import Enum
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Any, Tuple
import time
import random

class NetworkProtocol(Enum):
    """网络协议枚举"""
    TCP = "TCP"
    UDP = "UDP"
    RDMA = "RDMA"

class CompressionCodec(Enum):
    """压缩编解码器枚举"""
    NONE = "NONE"
    GZIP = "GZIP"
    LZO = "LZO"
    SNAPPY = "SNAPPY"
    LZ4 = "LZ4"
    ZSTD = "ZSTD"

class NetworkOptimizationType(Enum):
    """网络优化类型枚举"""
    BANDWIDTH = "bandwidth"
    LATENCY = "latency"
    THROUGHPUT = "throughput"
    CONNECTION_POOL = "connection_pool"
    COMPRESSION = "compression"

@dataclass
class NetworkConfig:
    """网络配置数据类"""
    # RPC配置
    rpc_timeout_ms: int = 60000
    rpc_retry_count: int = 3
    rpc_retry_interval_ms: int = 1000
    
    # 连接池配置
    max_connections_per_server: int = 10
    connection_pool_size: int = 100
    connection_idle_timeout_ms: int = 300000
    connection_keepalive: bool = True
    
    # 缓冲区配置
    socket_send_buffer_size: int = 65536  # 64KB
    socket_receive_buffer_size: int = 65536  # 64KB
    rpc_buffer_size: int = 131072  # 128KB
    
    # 压缩配置
    rpc_compression_codec: CompressionCodec = CompressionCodec.NONE
    compression_threshold_bytes: int = 1024
    
    # TCP配置
    tcp_nodelay: bool = True
    tcp_keepalive: bool = True
    tcp_keepalive_idle: int = 7200
    tcp_keepalive_interval: int = 75
    tcp_keepalive_count: int = 9
    
    # 高级配置
    enable_nagle_algorithm: bool = False
    enable_tcp_window_scaling: bool = True
    max_segment_size: int = 1460
    congestion_control: str = "cubic"

@dataclass
class NetworkMetrics:
    """网络指标数据类"""
    # 延迟指标
    avg_rpc_latency_ms: float = 0.0
    p95_rpc_latency_ms: float = 0.0
    p99_rpc_latency_ms: float = 0.0
    
    # 吞吐量指标
    rpc_requests_per_second: float = 0.0
    network_throughput_mbps: float = 0.0
    bytes_sent_per_second: float = 0.0
    bytes_received_per_second: float = 0.0
    
    # 连接指标
    active_connections: int = 0
    connection_pool_utilization: float = 0.0
    connection_creation_rate: float = 0.0
    connection_timeout_count: int = 0
    
    # 错误指标
    rpc_timeout_count: int = 0
    rpc_retry_count: int = 0
    network_error_count: int = 0
    packet_loss_rate: float = 0.0
    
    # 压缩指标
    compression_ratio: float = 0.0
    compression_cpu_overhead: float = 0.0

@dataclass
class NetworkOptimizationRecommendation:
    """网络优化建议数据类"""
    recommendation_id: str
    optimization_type: NetworkOptimizationType
    title: str
    description: str
    current_config: str
    recommended_config: str
    expected_benefit: str
    implementation_complexity: str
    priority: str

class HBaseNetworkOptimizer:
    """HBase网络优化器"""
    
    def __init__(self):
        self.network_config = NetworkConfig()
        self.network_metrics_history: List[NetworkMetrics] = []
        self.optimization_recommendations: List[NetworkOptimizationRecommendation] = []
    
    def analyze_network_performance(self, metrics: NetworkMetrics) -> Dict[str, Any]:
        """分析网络性能"""
        analysis = {
            "overall_score": 100.0,
            "issues": [],
            "recommendations": [],
            "performance_summary": {}
        }
        
        # 分析延迟
        if metrics.avg_rpc_latency_ms > 50:
            analysis["overall_score"] -= 20
            analysis["issues"].append(f"平均RPC延迟过高: {metrics.avg_rpc_latency_ms:.1f}ms")
            analysis["recommendations"].append("latency_001")
        
        if metrics.p99_rpc_latency_ms > 200:
            analysis["overall_score"] -= 15
            analysis["issues"].append(f"P99延迟过高: {metrics.p99_rpc_latency_ms:.1f}ms")
            analysis["recommendations"].append("latency_002")
        
        # 分析吞吐量
        if metrics.network_throughput_mbps < 100:  # 假设期望100Mbps
            analysis["overall_score"] -= 15
            analysis["issues"].append(f"网络吞吐量偏低: {metrics.network_throughput_mbps:.1f}Mbps")
            analysis["recommendations"].append("throughput_001")
        
        # 分析连接池
        if metrics.connection_pool_utilization > 90:
            analysis["overall_score"] -= 10
            analysis["issues"].append(f"连接池利用率过高: {metrics.connection_pool_utilization:.1f}%")
            analysis["recommendations"].append("connection_pool_001")
        
        # 分析超时和重试
        total_requests = metrics.rpc_requests_per_second * 60  # 假设1分钟统计
        if total_requests > 0:
            timeout_ratio = metrics.rpc_timeout_count / total_requests
            retry_ratio = metrics.rpc_retry_count / total_requests
            
            if timeout_ratio > 0.01:  # 超过1%
                analysis["overall_score"] -= 15
                analysis["issues"].append(f"RPC超时率过高: {timeout_ratio:.1%}")
                analysis["recommendations"].append("timeout_001")
            
            if retry_ratio > 0.05:  # 超过5%
                analysis["overall_score"] -= 10
                analysis["issues"].append(f"RPC重试率过高: {retry_ratio:.1%}")
                analysis["recommendations"].append("retry_001")
        
        # 分析网络错误
        if metrics.packet_loss_rate > 0.001:  # 超过0.1%
            analysis["overall_score"] -= 20
            analysis["issues"].append(f"丢包率过高: {metrics.packet_loss_rate:.3%}")
            analysis["recommendations"].append("packet_loss_001")
        
        # 分析压缩效果
        if metrics.compression_ratio > 0 and metrics.compression_ratio < 0.3:
            analysis["issues"].append(f"压缩效果不佳: {metrics.compression_ratio:.1%}")
            analysis["recommendations"].append("compression_001")
        
        analysis["performance_summary"] = {
            "avg_latency": f"{metrics.avg_rpc_latency_ms:.1f}ms",
            "p99_latency": f"{metrics.p99_rpc_latency_ms:.1f}ms",
            "throughput": f"{metrics.network_throughput_mbps:.1f}Mbps",
            "rps": f"{metrics.rpc_requests_per_second:.0f}",
            "connection_utilization": f"{metrics.connection_pool_utilization:.1f}%",
            "timeout_rate": f"{metrics.rpc_timeout_count}/{total_requests if total_requests > 0 else 1}"
        }
        
        return analysis
    
    def generate_network_recommendations(self, analysis: Dict[str, Any]) -> List[NetworkOptimizationRecommendation]:
        """生成网络优化建议"""
        recommendations = []
        
        # 延迟优化建议
        if "latency_001" in analysis["recommendations"]:
            recommendations.append(NetworkOptimizationRecommendation(
                recommendation_id="tcp_nodelay",
                optimization_type=NetworkOptimizationType.LATENCY,
                title="启用TCP_NODELAY",
                description="禁用Nagle算法减少延迟",
                current_config=f"hbase.ipc.client.tcpnodelay={self.network_config.tcp_nodelay}",
                recommended_config="hbase.ipc.client.tcpnodelay=true",
                expected_benefit="减少小包延迟,提升响应速度",
                implementation_complexity="low",
                priority="high"
            ))
        
        if "latency_002" in analysis["recommendations"]:
            recommendations.append(NetworkOptimizationRecommendation(
                recommendation_id="rpc_timeout_reduce",
                optimization_type=NetworkOptimizationType.LATENCY,
                title="优化RPC超时配置",
                description="调整RPC超时时间和重试策略",
                current_config=f"hbase.rpc.timeout={self.network_config.rpc_timeout_ms}ms",
                recommended_config="hbase.rpc.timeout=30000ms",
                expected_benefit="减少长尾延迟,提升用户体验",
                implementation_complexity="low",
                priority="medium"
            ))
        
        # 吞吐量优化建议
        if "throughput_001" in analysis["recommendations"]:
            recommendations.append(NetworkOptimizationRecommendation(
                recommendation_id="buffer_size_increase",
                optimization_type=NetworkOptimizationType.THROUGHPUT,
                title="增加网络缓冲区大小",
                description="增加socket缓冲区提升吞吐量",
                current_config=f"socket.send.buffer={self.network_config.socket_send_buffer_size}",
                recommended_config="socket.send.buffer=131072",
                expected_benefit="提升网络吞吐量,减少网络瓶颈",
                implementation_complexity="low",
                priority="medium"
            ))
        
        # 连接池优化建议
        if "connection_pool_001" in analysis["recommendations"]:
            recommendations.append(NetworkOptimizationRecommendation(
                recommendation_id="connection_pool_expand",
                optimization_type=NetworkOptimizationType.CONNECTION_POOL,
                title="扩展连接池大小",
                description="增加连接池大小以支持更高并发",
                current_config=f"hbase.client.max.perserver.tasks={self.network_config.max_connections_per_server}",
                recommended_config="hbase.client.max.perserver.tasks=20",
                expected_benefit="支持更高并发,减少连接等待",
                implementation_complexity="low",
                priority="medium"
            ))
        
        # 压缩优化建议
        if "compression_001" in analysis["recommendations"]:
            recommendations.append(NetworkOptimizationRecommendation(
                recommendation_id="rpc_compression_enable",
                optimization_type=NetworkOptimizationType.COMPRESSION,
                title="启用RPC压缩",
                description="启用RPC压缩减少网络传输量",
                current_config="hbase.rpc.compression=none",
                recommended_config="hbase.rpc.compression=snappy",
                expected_benefit="减少网络带宽使用,提升传输效率",
                implementation_complexity="low",
                priority="medium"
            ))
        
        # 超时优化建议
        if "timeout_001" in analysis["recommendations"]:
            recommendations.append(NetworkOptimizationRecommendation(
                recommendation_id="timeout_tuning",
                optimization_type=NetworkOptimizationType.LATENCY,
                title="调优超时和重试参数",
                description="优化超时时间和重试策略",
                current_config=f"重试次数: {self.network_config.rpc_retry_count}",
                recommended_config="增加重试次数和间隔",
                expected_benefit="减少超时失败,提升可靠性",
                implementation_complexity="low",
                priority="high"
            ))
        
        return recommendations
    
    def generate_network_config(self, optimized_config: NetworkConfig = None) -> Dict[str, str]:
        """生成网络配置"""
        if optimized_config is None:
            optimized_config = self.network_config
        
        config = {}
        
        # RPC配置
        config["hbase.rpc.timeout"] = str(optimized_config.rpc_timeout_ms)
        config["hbase.client.retries.number"] = str(optimized_config.rpc_retry_count)
        config["hbase.client.pause"] = str(optimized_config.rpc_retry_interval_ms)
        
        # 连接配置
        config["hbase.client.max.perserver.tasks"] = str(optimized_config.max_connections_per_server)
        config["hbase.client.max.total.tasks"] = str(optimized_config.connection_pool_size)
        config["hbase.ipc.client.connection.maxidletime"] = str(optimized_config.connection_idle_timeout_ms)
        
        # TCP配置
        config["hbase.ipc.client.tcpnodelay"] = str(optimized_config.tcp_nodelay).lower()
        config["hbase.ipc.client.tcpkeepalive"] = str(optimized_config.tcp_keepalive).lower()
        
        # 缓冲区配置
        config["hbase.ipc.client.socket.sendbuffersize"] = str(optimized_config.socket_send_buffer_size)
        config["hbase.ipc.client.socket.receivebuffersize"] = str(optimized_config.socket_receive_buffer_size)
        config["hbase.ipc.server.callqueue.read.ratio"] = "0.7"
        config["hbase.ipc.server.callqueue.scan.ratio"] = "0.5"
        
        # 压缩配置
        if optimized_config.rpc_compression_codec != CompressionCodec.NONE:
            config["hbase.rpc.compression"] = optimized_config.rpc_compression_codec.value.lower()
            config["hbase.rpc.compression.threshold"] = str(optimized_config.compression_threshold_bytes)
        
        # 高级配置
        config["hbase.regionserver.handler.count"] = "100"
        config["hbase.regionserver.metahandler.count"] = "20"
        config["hbase.ipc.server.max.callqueue.length"] = "1000"
        
        return config
    
    def simulate_network_metrics(self, config: NetworkConfig, 
                               network_condition: str = "good") -> NetworkMetrics:
        """模拟网络指标"""
        # 基础延迟(毫秒)
        if network_condition == "excellent":
            base_latency = 5
            latency_variance = 2
        elif network_condition == "good":
            base_latency = 15
            latency_variance = 5
        elif network_condition == "fair":
            base_latency = 30
            latency_variance = 10
        else:  # poor
            base_latency = 60
            latency_variance = 20
        
        # TCP_NODELAY影响
        if config.tcp_nodelay:
            latency_reduction = 0.8
        else:
            latency_reduction = 1.0
        
        # 缓冲区大小影响
        buffer_factor = min(config.socket_send_buffer_size / 65536, 2.0)
        throughput_multiplier = 1.0 + (buffer_factor - 1.0) * 0.3
        
        # 压缩影响
        if config.rpc_compression_codec != CompressionCodec.NONE:
            compression_ratio = 0.4  # 40%压缩率
            compression_overhead = 2  # 2ms额外延迟
            bandwidth_saving = 0.6  # 节省60%带宽
        else:
            compression_ratio = 0.0
            compression_overhead = 0
            bandwidth_saving = 1.0
        
        avg_latency = base_latency * latency_reduction + compression_overhead
        p95_latency = avg_latency * 1.5
        p99_latency = avg_latency * 2.0
        
        # 吞吐量计算
        base_throughput = 100 * throughput_multiplier * bandwidth_saving  # Mbps
        rps = 1000 / avg_latency * config.max_connections_per_server
        
        # 连接池利用率
        pool_utilization = min(rps / (config.connection_pool_size * 10), 100)
        
        # 错误率
        if network_condition == "poor":
            timeout_rate = 0.02
            retry_rate = 0.08
            packet_loss = 0.005
        elif network_condition == "fair":
            timeout_rate = 0.005
            retry_rate = 0.03
            packet_loss = 0.001
        else:
            timeout_rate = 0.001
            retry_rate = 0.01
            packet_loss = 0.0001
        
        return NetworkMetrics(
            avg_rpc_latency_ms=avg_latency,
            p95_rpc_latency_ms=p95_latency,
            p99_rpc_latency_ms=p99_latency,
            rpc_requests_per_second=rps,
            network_throughput_mbps=base_throughput,
            bytes_sent_per_second=base_throughput * 1024 * 1024 / 8 * 0.7,
            bytes_received_per_second=base_throughput * 1024 * 1024 / 8 * 0.3,
            active_connections=int(config.max_connections_per_server * 0.8),
            connection_pool_utilization=pool_utilization,
            connection_creation_rate=rps * 0.1,
            connection_timeout_count=int(rps * 60 * timeout_rate),
            rpc_timeout_count=int(rps * 60 * timeout_rate),
            rpc_retry_count=int(rps * 60 * retry_rate),
            network_error_count=int(rps * 60 * packet_loss),
            packet_loss_rate=packet_loss,
            compression_ratio=compression_ratio,
            compression_cpu_overhead=compression_overhead
        )

# 网络优化示例
print("\n=== HBase网络优化示例 ===")

# 创建网络优化器
network_optimizer = HBaseNetworkOptimizer()

print("1. 当前网络配置:")
current_network_config = network_optimizer.network_config
print(f"  RPC超时: {current_network_config.rpc_timeout_ms}ms")
print(f"  最大连接数/服务器: {current_network_config.max_connections_per_server}")
print(f"  TCP_NODELAY: {current_network_config.tcp_nodelay}")
print(f"  发送缓冲区: {current_network_config.socket_send_buffer_size} bytes")
print(f"  RPC压缩: {current_network_config.rpc_compression_codec.value}")

print("\n2. 模拟网络性能指标:")
network_metrics = network_optimizer.simulate_network_metrics(current_network_config, "fair")
print(f"  平均RPC延迟: {network_metrics.avg_rpc_latency_ms:.1f}ms")
print(f"  P99延迟: {network_metrics.p99_rpc_latency_ms:.1f}ms")
print(f"  网络吞吐量: {network_metrics.network_throughput_mbps:.1f}Mbps")
print(f"  RPC请求率: {network_metrics.rpc_requests_per_second:.0f} req/s")
print(f"  连接池利用率: {network_metrics.connection_pool_utilization:.1f}%")
print(f"  RPC超时次数: {network_metrics.rpc_timeout_count}")
print(f"  丢包率: {network_metrics.packet_loss_rate:.3%}")

print("\n3. 网络性能分析:")
network_analysis = network_optimizer.analyze_network_performance(network_metrics)
print(f"  总体评分: {network_analysis['overall_score']:.1f}/100")
if network_analysis['issues']:
    print("  发现问题:")
    for issue in network_analysis['issues']:
        print(f"    - {issue}")
else:
    print("  ✅ 网络性能良好")

print("\n4. 网络优化建议:")
network_recommendations = network_optimizer.generate_network_recommendations(network_analysis)
for i, rec in enumerate(network_recommendations, 1):
    print(f"  {i}. [{rec.optimization_type.value}] {rec.title}")
    print(f"     当前配置: {rec.current_config}")
    print(f"     建议配置: {rec.recommended_config}")
    print(f"     预期收益: {rec.expected_benefit}")
    print(f"     优先级: {rec.priority}")

print("\n5. 生成优化后的网络配置:")
# 创建优化配置
optimized_network_config = NetworkConfig(
    rpc_timeout_ms=30000,
    max_connections_per_server=20,
    tcp_nodelay=True,
    socket_send_buffer_size=131072,
    socket_receive_buffer_size=131072,
    rpc_compression_codec=CompressionCodec.SNAPPY,
    compression_threshold_bytes=1024
)

network_config_dict = network_optimizer.generate_network_config(optimized_network_config)
print("  HBase网络配置参数:")
for key, value in list(network_config_dict.items())[:10]:  # 显示前10个
    print(f"    {key} = {value}")
print("    ...")

print("\n6. 优化后性能预测:")
optimized_network_metrics = network_optimizer.simulate_network_metrics(optimized_network_config, "fair")
print(f"  优化前 - 平均延迟: {network_metrics.avg_rpc_latency_ms:.1f}ms, 吞吐量: {network_metrics.network_throughput_mbps:.1f}Mbps")
print(f"  优化后 - 平均延迟: {optimized_network_metrics.avg_rpc_latency_ms:.1f}ms, 吞吐量: {optimized_network_metrics.network_throughput_mbps:.1f}Mbps")
latency_improvement = (network_metrics.avg_rpc_latency_ms - optimized_network_metrics.avg_rpc_latency_ms) / network_metrics.avg_rpc_latency_ms * 100
throughput_improvement = (optimized_network_metrics.network_throughput_mbps - network_metrics.network_throughput_mbps) / network_metrics.network_throughput_mbps * 100
print(f"  性能提升: 延迟减少 {latency_improvement:.1f}%, 吞吐量提升 {throughput_improvement:.1f}%")

5. 磁盘IO优化

5.1 存储配置优化

from enum import Enum
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Any, Tuple
import time
import random

class StorageType(Enum):
    """存储类型枚举"""
    HDD = "HDD"
    SSD = "SSD"
    NVME = "NVME"
    HYBRID = "HYBRID"

class IOScheduler(Enum):
    """IO调度器枚举"""
    CFQ = "cfq"  # Completely Fair Queuing
    DEADLINE = "deadline"
    NOOP = "noop"
    MQ_DEADLINE = "mq-deadline"
    KYBER = "kyber"
    BFQ = "bfq"  # Budget Fair Queuing

class CompressionAlgorithm(Enum):
    """压缩算法枚举"""
    NONE = "NONE"
    GZIP = "GZIP"
    LZO = "LZO"
    SNAPPY = "SNAPPY"
    LZ4 = "LZ4"
    ZSTD = "ZSTD"

class IOOptimizationType(Enum):
    """IO优化类型枚举"""
    THROUGHPUT = "throughput"
    LATENCY = "latency"
    IOPS = "iops"
    COMPRESSION = "compression"
    CACHING = "caching"

@dataclass
class StorageConfig:
    """存储配置数据类"""
    # 基础配置
    storage_type: StorageType = StorageType.SSD
    io_scheduler: IOScheduler = IOScheduler.DEADLINE
    
    # HFile配置
    hfile_block_size: int = 65536  # 64KB
    hfile_compression: CompressionAlgorithm = CompressionAlgorithm.SNAPPY
    hfile_index_block_encoding: str = "PREFIX"
    hfile_data_block_encoding: str = "FAST_DIFF"
    
    # WAL配置
    wal_compression: CompressionAlgorithm = CompressionAlgorithm.LZ4
    wal_sync_interval_ms: int = 1000
    wal_buffer_size: int = 2097152  # 2MB
    wal_max_logs: int = 32
    
    # 压缩配置
    major_compaction_interval_hours: int = 168  # 7天
    minor_compaction_ratio: float = 0.2
    compaction_throughput_mb_per_sec: int = 50
    max_compaction_size_mb: int = 10240  # 10GB
    
    # 缓存配置
    enable_bucket_cache: bool = True
    bucket_cache_size_mb: int = 4096
    enable_compressed_cache: bool = True
    
    # 文件系统配置
    enable_short_circuit_reads: bool = True
    dfs_block_size_mb: int = 128
    dfs_replication: int = 3
    
    # 高级配置
    enable_bloom_filters: bool = True
    bloom_filter_type: str = "ROW"
    enable_data_locality: bool = True
    prefetch_size_kb: int = 4096

@dataclass
class IOMetrics:
    """IO指标数据类"""
    # 读取指标
    read_iops: float = 0.0
    read_throughput_mbps: float = 0.0
    avg_read_latency_ms: float = 0.0
    p95_read_latency_ms: float = 0.0
    
    # 写入指标
    write_iops: float = 0.0
    write_throughput_mbps: float = 0.0
    avg_write_latency_ms: float = 0.0
    p95_write_latency_ms: float = 0.0
    
    # 压缩指标
    compaction_queue_size: int = 0
    compaction_throughput_mbps: float = 0.0
    major_compaction_time_hours: float = 0.0
    minor_compaction_frequency_per_hour: float = 0.0
    
    # 存储指标
    disk_utilization_percent: float = 0.0
    available_space_gb: float = 0.0
    total_space_gb: float = 0.0
    compression_ratio: float = 0.0
    
    # 缓存指标
    block_cache_hit_ratio: float = 0.0
    bucket_cache_hit_ratio: float = 0.0
    bloom_filter_hit_ratio: float = 0.0

@dataclass
class IOOptimizationRecommendation:
    """IO优化建议数据类"""
    recommendation_id: str
    optimization_type: IOOptimizationType
    title: str
    description: str
    current_config: str
    recommended_config: str
    expected_benefit: str
    implementation_complexity: str
    priority: str

class HBaseIOOptimizer:
    """HBase IO优化器"""
    
    def __init__(self):
        self.storage_config = StorageConfig()
        self.io_metrics_history: List[IOMetrics] = []
        self.optimization_recommendations: List[IOOptimizationRecommendation] = []
    
    def analyze_io_performance(self, metrics: IOMetrics) -> Dict[str, Any]:
        """分析IO性能"""
        analysis = {
            "overall_score": 100.0,
            "issues": [],
            "recommendations": [],
            "performance_summary": {}
        }
        
        # 分析读取性能
        if metrics.avg_read_latency_ms > 10:
            analysis["overall_score"] -= 20
            analysis["issues"].append(f"读取延迟过高: {metrics.avg_read_latency_ms:.1f}ms")
            analysis["recommendations"].append("read_latency_001")
        
        if metrics.read_iops < 1000:  # 假设期望1000 IOPS
            analysis["overall_score"] -= 15
            analysis["issues"].append(f"读取IOPS偏低: {metrics.read_iops:.0f}")
            analysis["recommendations"].append("read_iops_001")
        
        # 分析写入性能
        if metrics.avg_write_latency_ms > 20:
            analysis["overall_score"] -= 15
            analysis["issues"].append(f"写入延迟过高: {metrics.avg_write_latency_ms:.1f}ms")
            analysis["recommendations"].append("write_latency_001")
        
        # 分析压缩性能
        if metrics.compaction_queue_size > 10:
            analysis["overall_score"] -= 10
            analysis["issues"].append(f"压缩队列过长: {metrics.compaction_queue_size}")
            analysis["recommendations"].append("compaction_001")
        
        if metrics.major_compaction_time_hours > 12:
            analysis["overall_score"] -= 15
            analysis["issues"].append(f"主压缩时间过长: {metrics.major_compaction_time_hours:.1f}小时")
            analysis["recommendations"].append("compaction_002")
        
        # 分析存储利用率
        if metrics.disk_utilization_percent > 85:
            analysis["overall_score"] -= 20
            analysis["issues"].append(f"磁盘利用率过高: {metrics.disk_utilization_percent:.1f}%")
            analysis["recommendations"].append("storage_001")
        
        # 分析缓存命中率
        if metrics.block_cache_hit_ratio < 0.8:
            analysis["overall_score"] -= 10
            analysis["issues"].append(f"块缓存命中率偏低: {metrics.block_cache_hit_ratio:.1%}")
            analysis["recommendations"].append("cache_001")
        
        if metrics.bloom_filter_hit_ratio < 0.9:
            analysis["issues"].append(f"布隆过滤器命中率偏低: {metrics.bloom_filter_hit_ratio:.1%}")
            analysis["recommendations"].append("bloom_001")
        
        # 分析压缩比
        if metrics.compression_ratio < 0.3:
            analysis["issues"].append(f"压缩效果不佳: {metrics.compression_ratio:.1%}")
            analysis["recommendations"].append("compression_001")
        
        analysis["performance_summary"] = {
            "read_latency": f"{metrics.avg_read_latency_ms:.1f}ms",
            "write_latency": f"{metrics.avg_write_latency_ms:.1f}ms",
            "read_iops": f"{metrics.read_iops:.0f}",
            "write_iops": f"{metrics.write_iops:.0f}",
            "compaction_queue": str(metrics.compaction_queue_size),
            "disk_utilization": f"{metrics.disk_utilization_percent:.1f}%",
            "cache_hit_ratio": f"{metrics.block_cache_hit_ratio:.1%}"
        }
        
        return analysis
    
    def generate_io_recommendations(self, analysis: Dict[str, Any]) -> List[IOOptimizationRecommendation]:
        """生成IO优化建议"""
        recommendations = []
        
        # 读取延迟优化
        if "read_latency_001" in analysis["recommendations"]:
            recommendations.append(IOOptimizationRecommendation(
                recommendation_id="ssd_upgrade",
                optimization_type=IOOptimizationType.LATENCY,
                title="升级到SSD存储",
                description="使用SSD替代HDD减少读取延迟",
                current_config=f"存储类型: {self.storage_config.storage_type.value}",
                recommended_config="存储类型: SSD或NVMe",
                expected_benefit="显著减少读取延迟,提升查询性能",
                implementation_complexity="high",
                priority="high"
            ))
        
        # IOPS优化
        if "read_iops_001" in analysis["recommendations"]:
            recommendations.append(IOOptimizationRecommendation(
                recommendation_id="io_scheduler_optimize",
                optimization_type=IOOptimizationType.IOPS,
                title="优化IO调度器",
                description="针对SSD优化IO调度器配置",
                current_config=f"IO调度器: {self.storage_config.io_scheduler.value}",
                recommended_config="IO调度器: noop或mq-deadline",
                expected_benefit="提升IOPS性能,减少IO等待",
                implementation_complexity="low",
                priority="medium"
            ))
        
        # 写入延迟优化
        if "write_latency_001" in analysis["recommendations"]:
            recommendations.append(IOOptimizationRecommendation(
                recommendation_id="wal_optimize",
                optimization_type=IOOptimizationType.LATENCY,
                title="优化WAL配置",
                description="调整WAL同步间隔和缓冲区大小",
                current_config=f"WAL同步间隔: {self.storage_config.wal_sync_interval_ms}ms",
                recommended_config="WAL同步间隔: 500ms, 增加缓冲区",
                expected_benefit="减少写入延迟,提升写入性能",
                implementation_complexity="low",
                priority="medium"
            ))
        
        # 压缩优化
        if "compaction_001" in analysis["recommendations"]:
            recommendations.append(IOOptimizationRecommendation(
                recommendation_id="compaction_throttle",
                optimization_type=IOOptimizationType.THROUGHPUT,
                title="调整压缩限流",
                description="增加压缩吞吐量限制",
                current_config=f"压缩吞吐量: {self.storage_config.compaction_throughput_mb_per_sec}MB/s",
                recommended_config="压缩吞吐量: 100MB/s",
                expected_benefit="加快压缩速度,减少队列积压",
                implementation_complexity="low",
                priority="medium"
            ))
        
        if "compaction_002" in analysis["recommendations"]:
            recommendations.append(IOOptimizationRecommendation(
                recommendation_id="compaction_strategy",
                optimization_type=IOOptimizationType.THROUGHPUT,
                title="优化压缩策略",
                description="调整压缩触发条件和大小限制",
                current_config=f"最大压缩大小: {self.storage_config.max_compaction_size_mb}MB",
                recommended_config="减少最大压缩大小,增加并发",
                expected_benefit="减少单次压缩时间,提升整体性能",
                implementation_complexity="medium",
                priority="high"
            ))
        
        # 存储优化
        if "storage_001" in analysis["recommendations"]:
            recommendations.append(IOOptimizationRecommendation(
                recommendation_id="storage_expansion",
                optimization_type=IOOptimizationType.THROUGHPUT,
                title="扩展存储容量",
                description="增加存储空间或启用数据压缩",
                current_config="当前存储配置",
                recommended_config="增加存储或启用更高压缩比",
                expected_benefit="缓解存储压力,提升IO性能",
                implementation_complexity="medium",
                priority="high"
            ))
        
        # 缓存优化
        if "cache_001" in analysis["recommendations"]:
            recommendations.append(IOOptimizationRecommendation(
                recommendation_id="cache_size_increase",
                optimization_type=IOOptimizationType.CACHING,
                title="增加缓存大小",
                description="扩大块缓存和桶缓存大小",
                current_config=f"桶缓存: {self.storage_config.bucket_cache_size_mb}MB",
                recommended_config="桶缓存: 8192MB",
                expected_benefit="提升缓存命中率,减少磁盘IO",
                implementation_complexity="low",
                priority="medium"
            ))
        
        # 压缩算法优化
        if "compression_001" in analysis["recommendations"]:
            recommendations.append(IOOptimizationRecommendation(
                recommendation_id="compression_algorithm",
                optimization_type=IOOptimizationType.COMPRESSION,
                title="优化压缩算法",
                description="选择更高效的压缩算法",
                current_config=f"HFile压缩: {self.storage_config.hfile_compression.value}",
                recommended_config="HFile压缩: ZSTD或LZ4",
                expected_benefit="提升压缩比,节省存储空间",
                implementation_complexity="low",
                priority="medium"
            ))
        
        return recommendations
    
    def generate_storage_config(self, optimized_config: StorageConfig = None) -> Dict[str, str]:
        """生成存储配置"""
        if optimized_config is None:
            optimized_config = self.storage_config
        
        config = {}
        
        # HFile配置
        config["hfile.block.cache.size"] = "0.4"  # 40% of heap
        config["hbase.regionserver.global.memstore.size"] = "0.4"
        config["hfile.block.bloom.cacheonwrite"] = "true"
        config["hfile.block.index.cacheonwrite"] = "true"
        
        # 压缩配置
        config["hbase.hregion.majorcompaction"] = str(optimized_config.major_compaction_interval_hours * 3600000)
        config["hbase.hstore.compactionThreshold"] = "3"
        config["hbase.hstore.compaction.ratio"] = str(optimized_config.minor_compaction_ratio)
        config["hbase.regionserver.throughput.controller"] = str(optimized_config.compaction_throughput_mb_per_sec * 1024 * 1024)
        
        # WAL配置
        config["hbase.regionserver.hlog.syncer.count"] = "5"
        config["hbase.regionserver.hlog.blocksize"] = str(optimized_config.wal_buffer_size)
        config["hbase.regionserver.maxlogs"] = str(optimized_config.wal_max_logs)
        
        # 块大小配置
        config["hbase.mapreduce.hfileoutputformat.blocksize"] = str(optimized_config.hfile_block_size)
        config["dfs.blocksize"] = str(optimized_config.dfs_block_size_mb * 1024 * 1024)
        
        # 缓存配置
        if optimized_config.enable_bucket_cache:
            config["hbase.bucketcache.ioengine"] = "offheap"
            config["hbase.bucketcache.size"] = str(optimized_config.bucket_cache_size_mb)
        
        # 布隆过滤器配置
        if optimized_config.enable_bloom_filters:
            config["hbase.rs.cachebloomsonwrite"] = "true"
            config["hbase.regionserver.bloom.fold.ratio"] = "0.1"
        
        # 短路读取配置
        if optimized_config.enable_short_circuit_reads:
            config["dfs.client.read.shortcircuit"] = "true"
            config["dfs.domain.socket.path"] = "/var/lib/hadoop-hdfs/dn_socket"
        
        # 预取配置
        config["hbase.rs.prefetchblocksonopen"] = "true"
        config["dfs.client.cache.readahead"] = str(optimized_config.prefetch_size_kb * 1024)
        
        return config
    
    def simulate_io_metrics(self, config: StorageConfig, 
                          workload_type: str = "mixed") -> IOMetrics:
        """模拟IO指标"""
        # 基础性能根据存储类型
        if config.storage_type == StorageType.NVME:
            base_read_iops = 50000
            base_write_iops = 30000
            base_read_latency = 0.1
            base_write_latency = 0.2
        elif config.storage_type == StorageType.SSD:
            base_read_iops = 10000
            base_write_iops = 5000
            base_read_latency = 1.0
            base_write_latency = 2.0
        else:  # HDD
            base_read_iops = 150
            base_write_iops = 100
            base_read_latency = 10.0
            base_write_latency = 15.0
        
        # 工作负载影响
        if workload_type == "read_heavy":
            read_multiplier = 1.2
            write_multiplier = 0.8
        elif workload_type == "write_heavy":
            read_multiplier = 0.8
            write_multiplier = 1.2
        else:  # mixed
            read_multiplier = 1.0
            write_multiplier = 1.0
        
        # IO调度器影响
        if config.io_scheduler == IOScheduler.NOOP and config.storage_type in [StorageType.SSD, StorageType.NVME]:
            scheduler_boost = 1.1
        elif config.io_scheduler == IOScheduler.DEADLINE:
            scheduler_boost = 1.05
        else:
            scheduler_boost = 1.0
        
        # 压缩影响
        compression_cpu_overhead = {
            CompressionAlgorithm.NONE: 0,
            CompressionAlgorithm.LZ4: 0.05,
            CompressionAlgorithm.SNAPPY: 0.08,
            CompressionAlgorithm.GZIP: 0.15,
            CompressionAlgorithm.ZSTD: 0.12
        }
        
        compression_ratio_map = {
            CompressionAlgorithm.NONE: 0.0,
            CompressionAlgorithm.LZ4: 0.4,
            CompressionAlgorithm.SNAPPY: 0.35,
            CompressionAlgorithm.GZIP: 0.6,
            CompressionAlgorithm.ZSTD: 0.55
        }
        
        cpu_overhead = compression_cpu_overhead.get(config.hfile_compression, 0)
        compression_ratio = compression_ratio_map.get(config.hfile_compression, 0)
        
        # 计算最终指标
        read_iops = base_read_iops * read_multiplier * scheduler_boost * (1 - cpu_overhead)
        write_iops = base_write_iops * write_multiplier * scheduler_boost * (1 - cpu_overhead)
        
        read_latency = base_read_latency / scheduler_boost
        write_latency = base_write_latency / scheduler_boost
        
        # 缓存命中率
        cache_size_factor = min(config.bucket_cache_size_mb / 4096, 2.0)
        block_cache_hit_ratio = min(0.7 + cache_size_factor * 0.1, 0.95)
        
        # 布隆过滤器命中率
        bloom_hit_ratio = 0.95 if config.enable_bloom_filters else 0.0
        
        # 压缩指标
        compaction_queue = max(0, 10 - config.compaction_throughput_mb_per_sec // 10)
        compaction_time = max(2, 12 - config.compaction_throughput_mb_per_sec // 20)
        
        return IOMetrics(
            read_iops=read_iops,
            read_throughput_mbps=read_iops * 64 / 1024,  # 假设64KB块
            avg_read_latency_ms=read_latency,
            p95_read_latency_ms=read_latency * 2,
            write_iops=write_iops,
            write_throughput_mbps=write_iops * 64 / 1024,
            avg_write_latency_ms=write_latency,
            p95_write_latency_ms=write_latency * 2,
            compaction_queue_size=compaction_queue,
            compaction_throughput_mbps=config.compaction_throughput_mb_per_sec,
            major_compaction_time_hours=compaction_time,
            minor_compaction_frequency_per_hour=random.uniform(2, 6),
            disk_utilization_percent=random.uniform(60, 90),
            available_space_gb=random.uniform(100, 500),
            total_space_gb=1000,
            compression_ratio=compression_ratio,
            block_cache_hit_ratio=block_cache_hit_ratio,
            bucket_cache_hit_ratio=block_cache_hit_ratio * 1.1,
            bloom_filter_hit_ratio=bloom_hit_ratio
        )

# IO优化示例
print("\n=== HBase IO优化示例 ===")

# 创建IO优化器
io_optimizer = HBaseIOOptimizer()

print("1. 当前存储配置:")
current_storage_config = io_optimizer.storage_config
print(f"  存储类型: {current_storage_config.storage_type.value}")
print(f"  IO调度器: {current_storage_config.io_scheduler.value}")
print(f"  HFile压缩: {current_storage_config.hfile_compression.value}")
print(f"  WAL压缩: {current_storage_config.wal_compression.value}")
print(f"  压缩吞吐量: {current_storage_config.compaction_throughput_mb_per_sec}MB/s")
print(f"  桶缓存大小: {current_storage_config.bucket_cache_size_mb}MB")

print("\n2. 模拟IO性能指标:")
io_metrics = io_optimizer.simulate_io_metrics(current_storage_config, "mixed")
print(f"  读取IOPS: {io_metrics.read_iops:.0f}")
print(f"  写入IOPS: {io_metrics.write_iops:.0f}")
print(f"  平均读取延迟: {io_metrics.avg_read_latency_ms:.1f}ms")
print(f"  平均写入延迟: {io_metrics.avg_write_latency_ms:.1f}ms")
print(f"  压缩队列长度: {io_metrics.compaction_queue_size}")
print(f"  主压缩时间: {io_metrics.major_compaction_time_hours:.1f}小时")
print(f"  磁盘利用率: {io_metrics.disk_utilization_percent:.1f}%")
print(f"  块缓存命中率: {io_metrics.block_cache_hit_ratio:.1%}")
print(f"  压缩比: {io_metrics.compression_ratio:.1%}")

print("\n3. IO性能分析:")
io_analysis = io_optimizer.analyze_io_performance(io_metrics)
print(f"  总体评分: {io_analysis['overall_score']:.1f}/100")
if io_analysis['issues']:
    print("  发现问题:")
    for issue in io_analysis['issues']:
        print(f"    - {issue}")
else:
    print("  ✅ IO性能良好")

print("\n4. IO优化建议:")
io_recommendations = io_optimizer.generate_io_recommendations(io_analysis)
for i, rec in enumerate(io_recommendations, 1):
    print(f"  {i}. [{rec.optimization_type.value}] {rec.title}")
    print(f"     当前配置: {rec.current_config}")
    print(f"     建议配置: {rec.recommended_config}")
    print(f"     预期收益: {rec.expected_benefit}")
    print(f"     优先级: {rec.priority}")

print("\n5. 生成优化后的存储配置:")
# 创建优化配置
optimized_storage_config = StorageConfig(
    storage_type=StorageType.SSD,
    io_scheduler=IOScheduler.NOOP,
    hfile_compression=CompressionAlgorithm.ZSTD,
    wal_compression=CompressionAlgorithm.LZ4,
    compaction_throughput_mb_per_sec=100,
    bucket_cache_size_mb=8192,
    enable_short_circuit_reads=True,
    enable_bloom_filters=True
)

storage_config_dict = io_optimizer.generate_storage_config(optimized_storage_config)
print("  HBase存储配置参数:")
for key, value in list(storage_config_dict.items())[:10]:  # 显示前10个
    print(f"    {key} = {value}")
print("    ...")

print("\n6. 优化后性能预测:")
optimized_io_metrics = io_optimizer.simulate_io_metrics(optimized_storage_config, "mixed")
print(f"  优化前 - 读取IOPS: {io_metrics.read_iops:.0f}, 读取延迟: {io_metrics.avg_read_latency_ms:.1f}ms")
print(f"  优化后 - 读取IOPS: {optimized_io_metrics.read_iops:.0f}, 读取延迟: {optimized_io_metrics.avg_read_latency_ms:.1f}ms")
iops_improvement = (optimized_io_metrics.read_iops - io_metrics.read_iops) / io_metrics.read_iops * 100
latency_improvement = (io_metrics.avg_read_latency_ms - optimized_io_metrics.avg_read_latency_ms) / io_metrics.avg_read_latency_ms * 100
print(f"  性能提升: IOPS提升 {iops_improvement:.1f}%, 延迟减少 {latency_improvement:.1f}%")

6. 总结

6.1 性能优化关键要点

本章详细介绍了HBase性能优化与调优的各个方面,主要包括:

1. 性能监控与诊断 - 建立完善的性能监控体系 - 实时收集和分析关键性能指标 - 及时发现和诊断性能问题 - 生成性能告警和优化建议

2. 性能调优策略 - 基于性能分析结果制定调优策略 - 提供配置参数优化建议 - 支持多种优化模板和场景 - 生成标准化配置文件

3. 表设计优化 - 优化行键设计模式 - 合理配置列族结构 - 选择适当的压缩算法 - 调整Region分布策略

4. JVM调优 - 分析GC性能表现 - 优化JVM参数配置 - 选择合适的垃圾收集器 - 减少GC停顿时间

5. 缓存优化 - 配置合适的缓存类型 - 优化缓存大小和策略 - 提升缓存命中率 - 减少磁盘IO开销

6. 网络优化 - 调优RPC配置参数 - 优化连接池设置 - 启用网络压缩 - 减少网络延迟

7. 磁盘IO优化 - 选择合适的存储类型 - 优化IO调度器配置 - 调整压缩策略 - 提升存储性能

6.2 最佳实践建议

监控和诊断 - 建立多层次的监控体系 - 设置合理的告警阈值 - 定期进行性能评估 - 保持监控数据的历史记录

配置优化 - 根据硬件环境调整配置 - 针对工作负载特点优化 - 采用渐进式调优方法 - 验证优化效果

容量规划 - 基于历史数据预测增长 - 考虑峰值负载需求 - 预留适当的性能余量 - 制定扩容计划

运维管理 - 建立标准化的运维流程 - 自动化常见的运维任务 - 定期进行性能调优 - 持续优化系统配置

6.3 下一步学习

完成本章学习后,建议继续深入以下方面:

  1. 高级调优技术

    • 深入学习HBase内部机制
    • 掌握更多调优工具和方法
    • 研究特定场景的优化策略
  2. 自动化运维

    • 学习DevOps最佳实践
    • 构建自动化监控和告警系统
    • 实现智能化的性能调优
  3. 大规模部署

    • 学习大规模集群的管理
    • 掌握多数据中心部署
    • 研究云原生HBase解决方案
  4. 新技术探索

    • 关注HBase新版本特性
    • 学习相关的大数据技术
    • 探索AI在数据库优化中的应用

通过系统的性能优化与调优,可以显著提升HBase集群的性能表现,为业务应用提供更好的支撑。