1. 性能概述
1.1 性能指标
Kong的关键性能指标包括: - 吞吐量(Throughput): 每秒处理的请求数(RPS) - 延迟(Latency): 请求响应时间 - 并发连接数: 同时处理的连接数 - CPU使用率: 处理器资源消耗 - 内存使用率: 内存资源消耗 - 网络I/O: 网络带宽使用情况
1.2 性能基准
典型的Kong性能基准: - 单核性能: 10,000-20,000 RPS - 多核性能: 可线性扩展到100,000+ RPS - 平均延迟: <1ms (无插件) - P99延迟: <10ms (轻量级插件)
2. 系统级优化
2.1 操作系统优化
2.1.1 内核参数调优
# /etc/sysctl.conf
# 网络优化
net.core.somaxconn = 65535
net.core.netdev_max_backlog = 5000
net.ipv4.tcp_max_syn_backlog = 65535
net.ipv4.tcp_fin_timeout = 30
net.ipv4.tcp_keepalive_time = 1200
net.ipv4.tcp_rmem = 4096 65536 16777216
net.ipv4.tcp_wmem = 4096 65536 16777216
net.core.rmem_default = 262144
net.core.rmem_max = 16777216
net.core.wmem_default = 262144
net.core.wmem_max = 16777216
# 文件描述符限制
fs.file-max = 1000000
# 应用设置
sudo sysctl -p
2.1.2 文件描述符限制
# /etc/security/limits.conf
* soft nofile 1000000
* hard nofile 1000000
* soft nproc 1000000
* hard nproc 1000000
# 验证设置
ulimit -n
ulimit -u
2.1.3 CPU亲和性设置
# 绑定Kong进程到特定CPU核心
taskset -c 0-3 kong start
# 或在systemd服务中设置
# /etc/systemd/system/kong.service
[Service]
CPUAffinity=0-3
2.2 Nginx/OpenResty优化
2.2.1 Worker进程配置
# kong.conf
worker_processes auto; # 自动检测CPU核心数
worker_connections 16384; # 每个worker的连接数
worker_rlimit_nofile 65535; # 文件描述符限制
# 高级配置
worker_cpu_affinity auto; # 自动CPU亲和性
worker_priority -5; # 提高进程优先级
2.2.2 事件模型优化
# nginx.conf
events {
use epoll; # Linux下使用epoll
worker_connections 16384;
multi_accept on; # 一次接受多个连接
accept_mutex off; # 关闭accept锁
}
2.2.3 HTTP优化
http {
# 连接优化
sendfile on;
tcp_nopush on;
tcp_nodelay on;
keepalive_timeout 65;
keepalive_requests 1000;
# 缓冲区优化
client_body_buffer_size 128k;
client_max_body_size 10m;
client_header_buffer_size 1k;
large_client_header_buffers 4 4k;
output_buffers 1 32k;
postpone_output 1460;
# 压缩优化
gzip on;
gzip_vary on;
gzip_min_length 1024;
gzip_proxied any;
gzip_comp_level 6;
gzip_types text/plain text/css application/json application/javascript;
}
2.3 数据库优化
2.3.1 PostgreSQL优化
-- postgresql.conf
shared_buffers = 256MB
effective_cache_size = 1GB
work_mem = 4MB
maintenance_work_mem = 64MB
wal_buffers = 16MB
checkpoint_completion_target = 0.9
random_page_cost = 1.1
-- 连接池设置
max_connections = 200
2.3.2 数据库连接池
# kong.conf
pg_max_concurrent_queries = 0 # 无限制
pg_semaphore_timeout = 60000 # 60秒超时
# 使用连接池
pg_host = pgbouncer.example.com
pg_port = 6432
2.3.3 数据库索引优化
-- 为常用查询创建索引
CREATE INDEX CONCURRENTLY idx_services_name ON services(name);
CREATE INDEX CONCURRENTLY idx_routes_service_id ON routes(service_id);
CREATE INDEX CONCURRENTLY idx_plugins_service_id ON plugins(service_id);
CREATE INDEX CONCURRENTLY idx_consumers_username ON consumers(username);
-- 分析查询性能
EXPLAIN ANALYZE SELECT * FROM services WHERE name = 'my-service';
3. Kong配置优化
3.1 核心配置优化
3.1.1 基础性能配置
# kong.conf
# 数据库配置
db_update_frequency = 5 # 减少数据库轮询频率
db_update_propagation = 0 # 禁用传播延迟
db_cache_ttl = 3600 # 增加缓存TTL
# 内存配置
lua_shared_dict_size = 5m # 增加共享字典大小
lua_package_path = ./?.lua;./?/init.lua; # 优化Lua路径
# 日志配置
log_level = notice # 减少日志级别
error_default_type = text/plain
3.1.2 代理配置优化
# 上游连接优化
upstream_keepalive_pool_size = 60
upstream_keepalive_max_requests = 100
upstream_keepalive_idle_timeout = 60s
# 客户端连接优化
client_body_buffer_size = 8k
client_header_buffer_size = 1k
client_max_body_size = 0 # 无限制
3.2 缓存优化
3.2.1 启用代理缓存
# 启用代理缓存插件
curl -X POST http://localhost:8001/services/{service}/plugins \
--data "name=proxy-cache" \
--data "config.response_code[]=200" \
--data "config.response_code[]=301" \
--data "config.response_code[]=404" \
--data "config.request_method[]=GET" \
--data "config.request_method[]=HEAD" \
--data "config.content_type[]=text/plain" \
--data "config.content_type[]=application/json" \
--data "config.cache_ttl=300" \
--data "config.strategy=memory"
3.2.2 Redis缓存配置
# 使用Redis作为缓存后端
curl -X POST http://localhost:8001/services/{service}/plugins \
--data "name=proxy-cache" \
--data "config.strategy=redis" \
--data "config.redis.host=redis.example.com" \
--data "config.redis.port=6379" \
--data "config.redis.timeout=2000" \
--data "config.redis.password=redis_password" \
--data "config.redis.database=0"
3.2.3 缓存键优化
# 自定义缓存键
curl -X POST http://localhost:8001/services/{service}/plugins \
--data "name=proxy-cache" \
--data "config.cache_key[]=$$scheme" \
--data "config.cache_key[]=$$host" \
--data "config.cache_key[]=$$request_uri" \
--data "config.cache_key[]=$$http_authorization"
3.3 负载均衡优化
3.3.1 负载均衡算法
# 创建上游服务
curl -X POST http://localhost:8001/upstreams \
--data "name=my-upstream" \
--data "algorithm=least-connections" \
--data "hash_on=none" \
--data "hash_fallback=none" \
--data "healthchecks.active.healthy.interval=5" \
--data "healthchecks.active.unhealthy.interval=5"
# 一致性哈希
curl -X PATCH http://localhost:8001/upstreams/my-upstream \
--data "algorithm=consistent-hashing" \
--data "hash_on=header" \
--data "hash_on_header=X-User-ID"
3.3.2 健康检查优化
# 主动健康检查
curl -X PATCH http://localhost:8001/upstreams/my-upstream \
--data "healthchecks.active.type=http" \
--data "healthchecks.active.http_path=/health" \
--data "healthchecks.active.healthy.interval=5" \
--data "healthchecks.active.healthy.successes=2" \
--data "healthchecks.active.unhealthy.interval=5" \
--data "healthchecks.active.unhealthy.http_failures=3" \
--data "healthchecks.active.unhealthy.timeouts=3"
# 被动健康检查
curl -X PATCH http://localhost:8001/upstreams/my-upstream \
--data "healthchecks.passive.type=http" \
--data "healthchecks.passive.healthy.successes=3" \
--data "healthchecks.passive.unhealthy.http_failures=3" \
--data "healthchecks.passive.unhealthy.timeouts=3"
4. 插件性能优化
4.1 插件选择和配置
4.1.1 高性能插件
# 使用高性能的认证插件
# Key Auth (最快)
curl -X POST http://localhost:8001/services/{service}/plugins \
--data "name=key-auth"
# JWT (中等性能)
curl -X POST http://localhost:8001/services/{service}/plugins \
--data "name=jwt" \
--data "config.claims_to_verify[]=exp"
# 避免复杂的OAuth 2.0 (较慢)
4.1.2 插件执行顺序优化
-- 自定义插件优先级
local plugin = {
PRIORITY = 1000, -- 高优先级,早执行
VERSION = "1.0.0",
}
function plugin:access(plugin_conf)
-- 快速失败逻辑
if not plugin_conf.enabled then
return
end
-- 性能关键的检查
local cache_key = "plugin:" .. kong.request.get_path()
local cached_result = kong.cache:get(cache_key)
if cached_result then
return cached_result
end
-- 执行插件逻辑
end
4.2 自定义插件优化
4.2.1 缓存使用
-- 使用Kong缓存
local cache = kong.cache
function plugin:access(plugin_conf)
local cache_key = "my_plugin:" .. kong.request.get_header("user-id")
local result, err = cache:get(cache_key, { ttl = 300 }, function()
-- 昂贵的计算或外部API调用
return expensive_operation()
end)
if err then
kong.log.err("Cache error: ", err)
return kong.response.exit(500)
end
-- 使用缓存结果
end
4.2.2 异步处理
-- 使用ngx.timer进行异步处理
local function async_task(premature, data)
if premature then
return
end
-- 异步处理逻辑
send_to_analytics(data)
end
function plugin:log(plugin_conf)
local ok, err = ngx.timer.at(0, async_task, {
request_id = kong.request.get_header("x-request-id"),
timestamp = ngx.now(),
status = kong.response.get_status()
})
if not ok then
kong.log.err("Failed to create timer: ", err)
end
end
4.2.3 内存优化
-- 避免内存泄漏
local _M = {}
-- 使用局部变量
local ngx_var = ngx.var
local kong_request = kong.request
local string_format = string.format
function _M.process_request()
-- 重用对象
local headers = kong_request.get_headers()
-- 避免创建大量临时字符串
local cache_key = string_format("key:%s:%s",
headers["user-id"] or "anonymous",
ngx_var.request_uri)
return cache_key
end
return _M
5. 监控系统
5.1 内置监控
5.1.1 Admin API监控
# 获取基本状态
curl http://localhost:8001/status
# 获取详细信息
curl http://localhost:8001/
# 检查数据库连接
curl http://localhost:8001/status/ready
5.1.2 Nginx状态模块
# 启用状态模块
server {
listen 8002;
location /nginx_status {
stub_status on;
access_log off;
allow 127.0.0.1;
deny all;
}
}
5.2 Prometheus监控
5.2.1 启用Prometheus插件
# 全局启用Prometheus插件
curl -X POST http://localhost:8001/plugins \
--data "name=prometheus" \
--data "config.per_consumer=true" \
--data "config.status_code_metrics=true" \
--data "config.latency_metrics=true" \
--data "config.bandwidth_metrics=true" \
--data "config.upstream_health_metrics=true"
5.2.2 自定义指标
-- 自定义Prometheus指标
local prometheus = require "kong.plugins.prometheus.exporter"
-- 创建自定义计数器
local custom_counter = prometheus:counter(
"kong_custom_requests_total",
"Total number of custom requests",
{"service", "route", "method"}
)
-- 创建自定义直方图
local custom_histogram = prometheus:histogram(
"kong_custom_request_duration_seconds",
"Custom request duration in seconds",
{"service", "route"},
{0.1, 0.5, 1, 2, 5, 10}
)
function plugin:access(plugin_conf)
-- 记录请求开始时间
ngx.ctx.start_time = ngx.now()
end
function plugin:log(plugin_conf)
local duration = ngx.now() - ngx.ctx.start_time
-- 更新指标
custom_counter:inc(1, {
kong.router.get_service().name,
kong.router.get_route().name,
kong.request.get_method()
})
custom_histogram:observe(duration, {
kong.router.get_service().name,
kong.router.get_route().name
})
end
5.2.3 Prometheus配置
# prometheus.yml
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'kong'
static_configs:
- targets: ['kong:8001']
metrics_path: '/metrics'
scrape_interval: 5s
5.3 日志监控
5.3.1 结构化日志
# 启用JSON格式日志
curl -X POST http://localhost:8001/plugins \
--data "name=file-log" \
--data "config.path=/var/log/kong/access.log" \
--data "config.custom_fields_by_lua.request_id=return kong.request.get_header('x-request-id')" \
--data "config.custom_fields_by_lua.user_agent=return kong.request.get_header('user-agent')"
5.3.2 ELK Stack集成
# Logstash插件
curl -X POST http://localhost:8001/plugins \
--data "name=tcp-log" \
--data "config.host=logstash.example.com" \
--data "config.port=5000"
# Elasticsearch插件
curl -X POST http://localhost:8001/plugins \
--data "name=http-log" \
--data "config.http_endpoint=http://elasticsearch.example.com:9200/kong-logs/_doc" \
--data "config.method=POST" \
--data "config.content_type=application/json"
5.3.3 日志分析
// Elasticsearch查询示例
{
"query": {
"bool": {
"must": [
{"range": {"@timestamp": {"gte": "now-1h"}}},
{"term": {"response.status": 500}}
]
}
},
"aggs": {
"error_by_service": {
"terms": {"field": "service.name"}
}
}
}
5.4 APM集成
5.4.1 Datadog集成
# 启用Datadog插件
curl -X POST http://localhost:8001/plugins \
--data "name=datadog" \
--data "config.host=datadog-agent.example.com" \
--data "config.port=8125" \
--data "config.metrics[]=request_count" \
--data "config.metrics[]=latency" \
--data "config.metrics[]=request_size" \
--data "config.metrics[]=status_count" \
--data "config.metrics[]=response_size"
5.4.2 New Relic集成
# 启用New Relic插件
curl -X POST http://localhost:8001/plugins \
--data "name=http-log" \
--data "config.http_endpoint=https://log-api.newrelic.com/log/v1" \
--data "config.method=POST" \
--data "config.headers.Content-Type=application/json" \
--data "config.headers.X-License-Key=YOUR_LICENSE_KEY"
5.4.3 Jaeger分布式追踪
# 启用Zipkin插件(兼容Jaeger)
curl -X POST http://localhost:8001/plugins \
--data "name=zipkin" \
--data "config.http_endpoint=http://jaeger-collector:14268/api/traces" \
--data "config.sample_ratio=0.1" \
--data "config.include_credential=true"
6. 性能测试
6.1 基准测试工具
6.1.1 wrk测试
# 基本负载测试
wrk -t12 -c400 -d30s http://localhost:8000/api/test
# 带脚本的测试
wrk -t12 -c400 -d30s -s script.lua http://localhost:8000/api/test
# script.lua
wrk.method = "POST"
wrk.body = '{"test": "data"}'
wrk.headers["Content-Type"] = "application/json"
wrk.headers["Authorization"] = "Bearer token"
6.1.2 Apache Bench (ab)
# 简单测试
ab -n 10000 -c 100 http://localhost:8000/api/test
# 带认证的测试
ab -n 10000 -c 100 -H "Authorization: Bearer token" http://localhost:8000/api/test
# POST请求测试
ab -n 1000 -c 10 -p data.json -T application/json http://localhost:8000/api/test
6.1.3 Artillery.js
# artillery-config.yml
config:
target: 'http://localhost:8000'
phases:
- duration: 60
arrivalRate: 10
- duration: 120
arrivalRate: 50
- duration: 60
arrivalRate: 100
defaults:
headers:
Authorization: 'Bearer token'
scenarios:
- name: "API Test"
weight: 100
flow:
- get:
url: "/api/test"
- post:
url: "/api/data"
json:
test: "data"
6.2 性能分析
6.2.1 系统资源监控
# CPU使用率
top -p $(pgrep kong)
# 内存使用
ps aux | grep kong
pmap $(pgrep kong)
# 网络连接
netstat -an | grep :8000
ss -tuln | grep :8000
# 文件描述符
lsof -p $(pgrep kong) | wc -l
6.2.2 应用性能分析
# 使用perf分析
perf record -g -p $(pgrep kong) sleep 30
perf report
# 使用strace分析系统调用
strace -p $(pgrep kong) -c
# 使用tcpdump分析网络
tcpdump -i any -w kong-traffic.pcap port 8000
6.2.3 数据库性能分析
-- PostgreSQL慢查询分析
SELECT query, calls, total_time, mean_time
FROM pg_stat_statements
WHERE query LIKE '%kong%'
ORDER BY total_time DESC
LIMIT 10;
-- 连接数监控
SELECT count(*) as connections, state
FROM pg_stat_activity
WHERE datname = 'kong'
GROUP BY state;
7. 告警系统
7.1 Prometheus告警规则
7.1.1 基础告警规则
# kong-alerts.yml
groups:
- name: kong
rules:
# 高错误率告警
- alert: KongHighErrorRate
expr: rate(kong_http_status{code=~"5.."}[5m]) > 0.1
for: 2m
labels:
severity: critical
annotations:
summary: "Kong high error rate detected"
description: "Kong error rate is {{ $value }} errors per second"
# 高延迟告警
- alert: KongHighLatency
expr: histogram_quantile(0.95, rate(kong_latency_bucket[5m])) > 1000
for: 5m
labels:
severity: warning
annotations:
summary: "Kong high latency detected"
description: "Kong 95th percentile latency is {{ $value }}ms"
# 上游服务不健康
- alert: KongUpstreamUnhealthy
expr: kong_upstream_target_health == 0
for: 1m
labels:
severity: critical
annotations:
summary: "Kong upstream target unhealthy"
description: "Upstream {{ $labels.upstream }} target {{ $labels.target }} is unhealthy"
7.1.2 业务指标告警
# 业务告警规则
- alert: KongLowThroughput
expr: rate(kong_http_status[5m]) < 10
for: 10m
labels:
severity: warning
annotations:
summary: "Kong low throughput"
description: "Kong throughput is {{ $value }} requests per second"
- alert: KongAuthFailureSpike
expr: rate(kong_http_status{code="401"}[5m]) > 5
for: 2m
labels:
severity: warning
annotations:
summary: "Kong authentication failure spike"
description: "High number of 401 errors: {{ $value }} per second"
7.2 告警通知
7.2.1 Alertmanager配置
# alertmanager.yml
global:
smtp_smarthost: 'smtp.example.com:587'
smtp_from: 'alerts@example.com'
route:
group_by: ['alertname']
group_wait: 10s
group_interval: 10s
repeat_interval: 1h
receiver: 'web.hook'
receivers:
- name: 'web.hook'
email_configs:
- to: 'admin@example.com'
subject: 'Kong Alert: {{ .GroupLabels.alertname }}'
body: |
{{ range .Alerts }}
Alert: {{ .Annotations.summary }}
Description: {{ .Annotations.description }}
{{ end }}
slack_configs:
- api_url: 'https://hooks.slack.com/services/YOUR/SLACK/WEBHOOK'
channel: '#alerts'
title: 'Kong Alert'
text: '{{ range .Alerts }}{{ .Annotations.summary }}{{ end }}'
7.2.2 自定义告警脚本
#!/usr/bin/env python3
# kong-health-check.py
import requests
import time
import smtplib
from email.mime.text import MIMEText
def check_kong_health():
try:
# 检查Kong状态
response = requests.get('http://localhost:8001/status', timeout=5)
if response.status_code != 200:
send_alert(f"Kong status check failed: {response.status_code}")
return False
# 检查数据库连接
response = requests.get('http://localhost:8001/status/ready', timeout=5)
if response.status_code != 200:
send_alert("Kong database connection failed")
return False
# 检查代理响应
response = requests.get('http://localhost:8000/health', timeout=5)
if response.status_code != 200:
send_alert(f"Kong proxy health check failed: {response.status_code}")
return False
return True
except Exception as e:
send_alert(f"Kong health check error: {str(e)}")
return False
def send_alert(message):
# 发送邮件告警
msg = MIMEText(message)
msg['Subject'] = 'Kong Health Alert'
msg['From'] = 'monitor@example.com'
msg['To'] = 'admin@example.com'
server = smtplib.SMTP('smtp.example.com', 587)
server.starttls()
server.login('monitor@example.com', 'password')
server.send_message(msg)
server.quit()
if __name__ == '__main__':
while True:
if not check_kong_health():
print(f"Health check failed at {time.ctime()}")
time.sleep(60) # 每分钟检查一次
8. 性能调优案例
8.1 高并发场景优化
8.1.1 问题分析
# 发现问题:高并发下响应时间增加
# 1. 检查系统资源
top
iostat 1
netstat -an | grep :8000 | wc -l
# 2. 检查Kong指标
curl http://localhost:8001/metrics | grep kong_latency
# 3. 检查数据库连接
psql -h localhost -U kong -c "SELECT count(*) FROM pg_stat_activity;"
8.1.2 优化方案
# 1. 增加worker进程数
echo "worker_processes auto;" >> /etc/kong/kong.conf
echo "worker_connections 16384;" >> /etc/kong/kong.conf
# 2. 优化数据库连接
echo "pg_max_concurrent_queries = 0" >> /etc/kong/kong.conf
echo "db_update_frequency = 10" >> /etc/kong/kong.conf
# 3. 启用缓存
curl -X POST http://localhost:8001/plugins \
--data "name=proxy-cache" \
--data "config.cache_ttl=300"
# 4. 重启Kong
kong restart
8.2 内存使用优化
8.2.1 内存泄漏检测
# 监控内存使用
while true; do
ps aux | grep kong | grep -v grep
sleep 60
done
# 使用valgrind检测内存泄漏
valgrind --tool=memcheck --leak-check=full kong start
8.2.2 内存优化配置
# kong.conf
lua_shared_dict_size = 5m
lua_package_cpath = /usr/local/lib/lua/5.1/?.so
mem_cache_size = 128m
# 限制请求体大小
client_max_body_size = 10m
client_body_buffer_size = 128k
8.3 数据库性能优化
8.3.1 查询优化
-- 分析慢查询
SELECT query, calls, total_time, mean_time, stddev_time
FROM pg_stat_statements
WHERE mean_time > 100
ORDER BY mean_time DESC;
-- 优化索引
CREATE INDEX CONCURRENTLY idx_routes_updated_at ON routes(updated_at);
CREATE INDEX CONCURRENTLY idx_services_enabled ON services(enabled) WHERE enabled = true;
8.3.2 连接池优化
# 使用PgBouncer
# /etc/pgbouncer/pgbouncer.ini
[databases]
kong = host=localhost port=5432 dbname=kong
[pgbouncer]
listen_port = 6432
listen_addr = *
auth_type = md5
auth_file = /etc/pgbouncer/userlist.txt
pool_mode = transaction
max_client_conn = 200
default_pool_size = 25
9. 监控仪表板
9.1 Grafana仪表板
9.1.1 Kong概览仪表板
{
"dashboard": {
"title": "Kong Overview",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "rate(kong_http_status[5m])",
"legendFormat": "{{service}}"
}
]
},
{
"title": "Response Time",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.95, rate(kong_latency_bucket[5m]))",
"legendFormat": "95th percentile"
},
{
"expr": "histogram_quantile(0.50, rate(kong_latency_bucket[5m]))",
"legendFormat": "50th percentile"
}
]
}
]
}
}
9.1.2 错误监控仪表板
{
"dashboard": {
"title": "Kong Errors",
"panels": [
{
"title": "Error Rate by Status Code",
"type": "graph",
"targets": [
{
"expr": "rate(kong_http_status{code=~\"4..|5..\"}[5m])",
"legendFormat": "{{code}}"
}
]
},
{
"title": "Top Error Services",
"type": "table",
"targets": [
{
"expr": "topk(10, rate(kong_http_status{code=~\"5..\"}[5m]))",
"format": "table"
}
]
}
]
}
}
9.2 自定义监控面板
9.2.1 实时监控脚本
#!/usr/bin/env python3
# kong-monitor.py
import requests
import time
import json
from datetime import datetime
def get_kong_metrics():
try:
response = requests.get('http://localhost:8001/metrics')
return response.text
except Exception as e:
print(f"Error fetching metrics: {e}")
return None
def parse_metrics(metrics_text):
metrics = {}
for line in metrics_text.split('\n'):
if line.startswith('kong_http_status'):
# 解析HTTP状态码指标
parts = line.split()
if len(parts) >= 2:
value = float(parts[1])
# 提取标签
labels = {}
if '{' in parts[0]:
label_part = parts[0].split('{')[1].split('}')[0]
for label in label_part.split(','):
key, val = label.split('=')
labels[key] = val.strip('"')
metrics[parts[0]] = {'value': value, 'labels': labels}
return metrics
def main():
while True:
metrics_text = get_kong_metrics()
if metrics_text:
metrics = parse_metrics(metrics_text)
# 计算总请求数
total_requests = sum(m['value'] for m in metrics.values()
if 'kong_http_status' in str(m))
# 计算错误率
error_requests = sum(m['value'] for m in metrics.values()
if 'kong_http_status' in str(m) and
m.get('labels', {}).get('code', '').startswith(('4', '5')))
error_rate = (error_requests / total_requests * 100) if total_requests > 0 else 0
print(f"[{datetime.now()}] Total: {total_requests}, Errors: {error_requests}, Error Rate: {error_rate:.2f}%")
time.sleep(10)
if __name__ == '__main__':
main()
10. 总结
Kong的性能优化是一个系统性工程,需要从多个层面进行:
10.1 优化层次
- 系统层: 操作系统参数、网络配置
- 应用层: Kong配置、插件优化
- 数据层: 数据库优化、缓存策略
- 监控层: 全面监控、及时告警
10.2 关键指标
- 吞吐量: 目标 >10,000 RPS
- 延迟: P95 <100ms, P99 <500ms
- 可用性: >99.9%
- 错误率: <0.1%
10.3 最佳实践
- 持续监控: 建立完善的监控体系
- 性能测试: 定期进行压力测试
- 容量规划: 基于监控数据进行容量规划
- 故障演练: 定期进行故障演练
在下一章节中,我们将介绍Kong与微服务架构的集成。