10.1 章节概述

本章将深入探讨Apache Kylin的高级特性和扩展能力,包括自定义函数开发、插件机制、存储引擎扩展、高级调优技巧等内容。通过本章的学习,您将掌握如何扩展Kylin的功能,优化系统性能,以及开发自定义组件。

10.1.1 学习目标

  • 掌握自定义函数(UDF)的开发和部署
  • 了解Kylin的插件机制和扩展点
  • 学习存储引擎的扩展和优化
  • 掌握高级调优技巧和性能优化
  • 了解Kylin的内部架构和扩展原理

10.1.2 技术架构

graph TB
    subgraph "Kylin扩展架构"
        A["应用层"] --> B["扩展接口层"]
        B --> C["核心引擎层"]
        C --> D["存储层"]
        
        subgraph "扩展接口层"
            B1["UDF接口"]
            B2["插件接口"]
            B3["存储接口"]
            B4["查询接口"]
        end
        
        subgraph "核心引擎层"
            C1["查询引擎"]
            C2["构建引擎"]
            C3["元数据引擎"]
            C4["缓存引擎"]
        end
        
        subgraph "存储层"
            D1["HBase"]
            D2["Parquet"]
            D3["自定义存储"]
        end
    end

10.2 自定义函数开发

10.2.1 UDF基础概念

用户定义函数(UDF)允许开发者扩展Kylin的SQL功能,实现自定义的数据处理逻辑。

UDF类型

  1. 标量函数(Scalar UDF):输入单行数据,返回单个值
  2. 聚合函数(Aggregate UDF):输入多行数据,返回聚合结果
  3. 表值函数(Table UDF):输入数据,返回表格结果

10.2.2 标量UDF开发

// ScalarUDFExample.java - 标量UDF示例
package com.example.kylin.udf;

import org.apache.calcite.linq4j.function.Parameter;
import org.apache.kylin.metadata.datatype.DataType;
import org.apache.kylin.query.udf.UDFMeta;
import org.apache.kylin.query.udf.ScalarUDF;

/**
 * 自定义字符串处理UDF
 */
@UDFMeta(
    name = "CUSTOM_CONCAT",
    description = "自定义字符串连接函数",
    returnType = "string"
)
public class CustomConcatUDF implements ScalarUDF {
    
    /**
     * 连接字符串并添加分隔符
     * @param str1 第一个字符串
     * @param str2 第二个字符串
     * @param separator 分隔符
     * @return 连接后的字符串
     */
    public String eval(
            @Parameter(name = "str1") String str1,
            @Parameter(name = "str2") String str2,
            @Parameter(name = "separator") String separator) {
        
        if (str1 == null && str2 == null) {
            return null;
        }
        
        if (str1 == null) {
            return str2;
        }
        
        if (str2 == null) {
            return str1;
        }
        
        if (separator == null) {
            separator = "";
        }
        
        return str1 + separator + str2;
    }
    
    /**
     * 重载方法:使用默认分隔符
     */
    public String eval(String str1, String str2) {
        return eval(str1, str2, "-");
    }
}

/**
 * 数学计算UDF
 */
@UDFMeta(
    name = "MATH_POWER",
    description = "计算幂次方",
    returnType = "double"
)
public class MathPowerUDF implements ScalarUDF {
    
    public Double eval(Double base, Double exponent) {
        if (base == null || exponent == null) {
            return null;
        }
        
        return Math.pow(base, exponent);
    }
    
    public Double eval(Integer base, Integer exponent) {
        if (base == null || exponent == null) {
            return null;
        }
        
        return Math.pow(base.doubleValue(), exponent.doubleValue());
    }
}

/**
 * 日期处理UDF
 */
@UDFMeta(
    name = "DATE_FORMAT_CUSTOM",
    description = "自定义日期格式化",
    returnType = "string"
)
public class DateFormatUDF implements ScalarUDF {
    
    private static final Map<String, SimpleDateFormat> formatCache = 
        new ConcurrentHashMap<>();
    
    public String eval(Date date, String pattern) {
        if (date == null || pattern == null) {
            return null;
        }
        
        try {
            SimpleDateFormat formatter = formatCache.computeIfAbsent(
                pattern, 
                p -> new SimpleDateFormat(p)
            );
            
            return formatter.format(date);
            
        } catch (Exception e) {
            return null;
        }
    }
    
    public String eval(String dateStr, String inputPattern, String outputPattern) {
        if (dateStr == null || inputPattern == null || outputPattern == null) {
            return null;
        }
        
        try {
            SimpleDateFormat inputFormatter = formatCache.computeIfAbsent(
                inputPattern, 
                p -> new SimpleDateFormat(p)
            );
            
            SimpleDateFormat outputFormatter = formatCache.computeIfAbsent(
                outputPattern, 
                p -> new SimpleDateFormat(p)
            );
            
            Date date = inputFormatter.parse(dateStr);
            return outputFormatter.format(date);
            
        } catch (Exception e) {
            return null;
        }
    }
}

10.2.3 聚合UDF开发

// AggregateUDFExample.java - 聚合UDF示例
package com.example.kylin.udf;

import org.apache.kylin.query.udf.AggregateUDF;
import org.apache.kylin.query.udf.UDFMeta;
import java.util.*;

/**
 * 自定义中位数聚合函数
 */
@UDFMeta(
    name = "MEDIAN",
    description = "计算中位数",
    returnType = "double"
)
public class MedianUDF implements AggregateUDF<Double, MedianUDF.MedianAccumulator> {
    
    public static class MedianAccumulator {
        private List<Double> values = new ArrayList<>();
        
        public void add(Double value) {
            if (value != null) {
                values.add(value);
            }
        }
        
        public void merge(MedianAccumulator other) {
            if (other != null && other.values != null) {
                this.values.addAll(other.values);
            }
        }
        
        public Double getResult() {
            if (values.isEmpty()) {
                return null;
            }
            
            Collections.sort(values);
            int size = values.size();
            
            if (size % 2 == 0) {
                // 偶数个元素,取中间两个的平均值
                return (values.get(size / 2 - 1) + values.get(size / 2)) / 2.0;
            } else {
                // 奇数个元素,取中间元素
                return values.get(size / 2);
            }
        }
    }
    
    @Override
    public MedianAccumulator createAccumulator() {
        return new MedianAccumulator();
    }
    
    @Override
    public void accumulate(MedianAccumulator accumulator, Double value) {
        accumulator.add(value);
    }
    
    @Override
    public void merge(MedianAccumulator accumulator, MedianAccumulator other) {
        accumulator.merge(other);
    }
    
    @Override
    public Double getResult(MedianAccumulator accumulator) {
        return accumulator.getResult();
    }
}

/**
 * 自定义标准差聚合函数
 */
@UDFMeta(
    name = "STDDEV_CUSTOM",
    description = "计算标准差",
    returnType = "double"
)
public class StandardDeviationUDF implements AggregateUDF<Double, StandardDeviationUDF.StdDevAccumulator> {
    
    public static class StdDevAccumulator {
        private double sum = 0.0;
        private double sumSquares = 0.0;
        private long count = 0;
        
        public void add(Double value) {
            if (value != null) {
                sum += value;
                sumSquares += value * value;
                count++;
            }
        }
        
        public void merge(StdDevAccumulator other) {
            if (other != null) {
                this.sum += other.sum;
                this.sumSquares += other.sumSquares;
                this.count += other.count;
            }
        }
        
        public Double getResult() {
            if (count == 0) {
                return null;
            }
            
            if (count == 1) {
                return 0.0;
            }
            
            double mean = sum / count;
            double variance = (sumSquares - sum * mean) / (count - 1);
            
            return Math.sqrt(variance);
        }
    }
    
    @Override
    public StdDevAccumulator createAccumulator() {
        return new StdDevAccumulator();
    }
    
    @Override
    public void accumulate(StdDevAccumulator accumulator, Double value) {
        accumulator.add(value);
    }
    
    @Override
    public void merge(StdDevAccumulator accumulator, StdDevAccumulator other) {
        accumulator.merge(other);
    }
    
    @Override
    public Double getResult(StdDevAccumulator accumulator) {
        return accumulator.getResult();
    }
}

/**
 * 自定义百分位数聚合函数
 */
@UDFMeta(
    name = "PERCENTILE_CUSTOM",
    description = "计算百分位数",
    returnType = "double"
)
public class PercentileUDF implements AggregateUDF<Double, PercentileUDF.PercentileAccumulator> {
    
    private final double percentile;
    
    public PercentileUDF() {
        this.percentile = 0.5; // 默认中位数
    }
    
    public PercentileUDF(double percentile) {
        if (percentile < 0.0 || percentile > 1.0) {
            throw new IllegalArgumentException("百分位数必须在0.0到1.0之间");
        }
        this.percentile = percentile;
    }
    
    public static class PercentileAccumulator {
        private List<Double> values = new ArrayList<>();
        
        public void add(Double value) {
            if (value != null) {
                values.add(value);
            }
        }
        
        public void merge(PercentileAccumulator other) {
            if (other != null && other.values != null) {
                this.values.addAll(other.values);
            }
        }
        
        public Double getResult(double percentile) {
            if (values.isEmpty()) {
                return null;
            }
            
            Collections.sort(values);
            int size = values.size();
            
            if (percentile == 0.0) {
                return values.get(0);
            }
            
            if (percentile == 1.0) {
                return values.get(size - 1);
            }
            
            double index = percentile * (size - 1);
            int lowerIndex = (int) Math.floor(index);
            int upperIndex = (int) Math.ceil(index);
            
            if (lowerIndex == upperIndex) {
                return values.get(lowerIndex);
            }
            
            double weight = index - lowerIndex;
            return values.get(lowerIndex) * (1 - weight) + values.get(upperIndex) * weight;
        }
    }
    
    @Override
    public PercentileAccumulator createAccumulator() {
        return new PercentileAccumulator();
    }
    
    @Override
    public void accumulate(PercentileAccumulator accumulator, Double value) {
        accumulator.add(value);
    }
    
    @Override
    public void merge(PercentileAccumulator accumulator, PercentileAccumulator other) {
        accumulator.merge(other);
    }
    
    @Override
    public Double getResult(PercentileAccumulator accumulator) {
        return accumulator.getResult(percentile);
    }
}

10.2.4 UDF部署和注册

<!-- pom.xml - UDF项目依赖 -->
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 
         http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    
    <groupId>com.example</groupId>
    <artifactId>kylin-custom-udf</artifactId>
    <version>1.0.0</version>
    <packaging>jar</packaging>
    
    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <kylin.version>4.0.3</kylin.version>
    </properties>
    
    <dependencies>
        <dependency>
            <groupId>org.apache.kylin</groupId>
            <artifactId>kylin-query</artifactId>
            <version>${kylin.version}</version>
            <scope>provided</scope>
        </dependency>
        
        <dependency>
            <groupId>org.apache.calcite</groupId>
            <artifactId>calcite-core</artifactId>
            <version>1.26.0</version>
            <scope>provided</scope>
        </dependency>
        
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.13.2</version>
            <scope>test</scope>
        </dependency>
    </dependencies>
    
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.8.1</version>
                <configuration>
                    <source>8</source>
                    <target>8</target>
                </configuration>
            </plugin>
            
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>3.2.4</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <createDependencyReducedPom>false</createDependencyReducedPom>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
</project>
#!/bin/bash
# deploy_udf.sh - UDF部署脚本

set -e

# 配置
KYLIN_HOME=${KYLIN_HOME:-"/opt/kylin"}
UDF_JAR="kylin-custom-udf-1.0.0.jar"
UDF_LIB_DIR="$KYLIN_HOME/lib"
UDF_CONFIG_FILE="$KYLIN_HOME/conf/kylin_udf.properties"

echo "开始部署自定义UDF..."

# 1. 编译UDF项目
echo "编译UDF项目..."
mvn clean package -DskipTests

if [ ! -f "target/$UDF_JAR" ]; then
    echo "错误:UDF JAR文件不存在"
    exit 1
fi

# 2. 复制JAR文件到Kylin lib目录
echo "复制JAR文件到Kylin lib目录..."
cp "target/$UDF_JAR" "$UDF_LIB_DIR/"

# 3. 创建UDF配置文件
echo "创建UDF配置文件..."
cat > "$UDF_CONFIG_FILE" << EOF
# 自定义UDF配置
# 格式:function_name=class_full_name

# 标量函数
CUSTOM_CONCAT=com.example.kylin.udf.CustomConcatUDF
MATH_POWER=com.example.kylin.udf.MathPowerUDF
DATE_FORMAT_CUSTOM=com.example.kylin.udf.DateFormatUDF

# 聚合函数
MEDIAN=com.example.kylin.udf.MedianUDF
STDDEV_CUSTOM=com.example.kylin.udf.StandardDeviationUDF
PERCENTILE_CUSTOM=com.example.kylin.udf.PercentileUDF
EOF

# 4. 更新Kylin配置
echo "更新Kylin配置..."
KYLIN_CONF="$KYLIN_HOME/conf/kylin.properties"

# 添加UDF配置
if ! grep -q "kylin.query.udf.config.file" "$KYLIN_CONF"; then
    echo "" >> "$KYLIN_CONF"
    echo "# UDF配置" >> "$KYLIN_CONF"
    echo "kylin.query.udf.config.file=$UDF_CONFIG_FILE" >> "$KYLIN_CONF"
    echo "kylin.query.udf.massin=true" >> "$KYLIN_CONF"
fi

# 5. 重启Kylin服务
echo "重启Kylin服务..."
"$KYLIN_HOME/bin/kylin.sh" stop
sleep 5
"$KYLIN_HOME/bin/kylin.sh" start

echo "UDF部署完成!"
echo "可以使用以下函数:"
echo "- CUSTOM_CONCAT(str1, str2, separator)"
echo "- MATH_POWER(base, exponent)"
echo "- DATE_FORMAT_CUSTOM(date, pattern)"
echo "- MEDIAN(column)"
echo "- STDDEV_CUSTOM(column)"
echo "- PERCENTILE_CUSTOM(column)"

10.2.5 UDF测试

// UDFTest.java - UDF单元测试
package com.example.kylin.udf;

import org.junit.Test;
import org.junit.Assert;
import java.util.Date;
import java.text.SimpleDateFormat;

public class UDFTest {
    
    @Test
    public void testCustomConcatUDF() {
        CustomConcatUDF udf = new CustomConcatUDF();
        
        // 测试正常情况
        String result = udf.eval("Hello", "World", " ");
        Assert.assertEquals("Hello World", result);
        
        // 测试默认分隔符
        result = udf.eval("Hello", "World");
        Assert.assertEquals("Hello-World", result);
        
        // 测试null值
        result = udf.eval(null, "World", " ");
        Assert.assertEquals("World", result);
        
        result = udf.eval("Hello", null, " ");
        Assert.assertEquals("Hello", result);
        
        result = udf.eval(null, null, " ");
        Assert.assertNull(result);
    }
    
    @Test
    public void testMathPowerUDF() {
        MathPowerUDF udf = new MathPowerUDF();
        
        // 测试Double类型
        Double result = udf.eval(2.0, 3.0);
        Assert.assertEquals(8.0, result, 0.001);
        
        // 测试Integer类型
        result = udf.eval(2, 3);
        Assert.assertEquals(8.0, result, 0.001);
        
        // 测试null值
        result = udf.eval(null, 3.0);
        Assert.assertNull(result);
        
        result = udf.eval(2.0, null);
        Assert.assertNull(result);
    }
    
    @Test
    public void testDateFormatUDF() throws Exception {
        DateFormatUDF udf = new DateFormatUDF();
        
        // 测试日期格式化
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd");
        Date date = sdf.parse("2023-12-25");
        
        String result = udf.eval(date, "yyyy/MM/dd");
        Assert.assertEquals("2023/12/25", result);
        
        // 测试字符串转换
        result = udf.eval("2023-12-25", "yyyy-MM-dd", "MM/dd/yyyy");
        Assert.assertEquals("12/25/2023", result);
        
        // 测试null值
        result = udf.eval(null, "yyyy-MM-dd");
        Assert.assertNull(result);
    }
    
    @Test
    public void testMedianUDF() {
        MedianUDF udf = new MedianUDF();
        MedianUDF.MedianAccumulator acc = udf.createAccumulator();
        
        // 测试奇数个元素
        udf.accumulate(acc, 1.0);
        udf.accumulate(acc, 3.0);
        udf.accumulate(acc, 2.0);
        
        Double result = udf.getResult(acc);
        Assert.assertEquals(2.0, result, 0.001);
        
        // 测试偶数个元素
        udf.accumulate(acc, 4.0);
        result = udf.getResult(acc);
        Assert.assertEquals(2.5, result, 0.001);
        
        // 测试空集合
        MedianUDF.MedianAccumulator emptyAcc = udf.createAccumulator();
        result = udf.getResult(emptyAcc);
        Assert.assertNull(result);
    }
    
    @Test
    public void testStandardDeviationUDF() {
        StandardDeviationUDF udf = new StandardDeviationUDF();
        StandardDeviationUDF.StdDevAccumulator acc = udf.createAccumulator();
        
        // 添加测试数据
        udf.accumulate(acc, 1.0);
        udf.accumulate(acc, 2.0);
        udf.accumulate(acc, 3.0);
        udf.accumulate(acc, 4.0);
        udf.accumulate(acc, 5.0);
        
        Double result = udf.getResult(acc);
        // 标准差应该约为1.58
        Assert.assertEquals(1.58, result, 0.01);
        
        // 测试单个元素
        StandardDeviationUDF.StdDevAccumulator singleAcc = udf.createAccumulator();
        udf.accumulate(singleAcc, 1.0);
        result = udf.getResult(singleAcc);
        Assert.assertEquals(0.0, result, 0.001);
    }
    
    @Test
    public void testPercentileUDF() {
        PercentileUDF udf = new PercentileUDF(0.5); // 中位数
        PercentileUDF.PercentileAccumulator acc = udf.createAccumulator();
        
        // 添加测试数据
        for (int i = 1; i <= 10; i++) {
            udf.accumulate(acc, (double) i);
        }
        
        Double result = udf.getResult(acc);
        Assert.assertEquals(5.5, result, 0.001);
        
        // 测试90%分位数
        PercentileUDF udf90 = new PercentileUDF(0.9);
        PercentileUDF.PercentileAccumulator acc90 = udf90.createAccumulator();
        
        for (int i = 1; i <= 10; i++) {
            udf90.accumulate(acc90, (double) i);
        }
        
        result = udf90.getResult(acc90);
        Assert.assertEquals(9.1, result, 0.001);
    }
}
-- udf_examples.sql - UDF使用示例

-- 1. 使用自定义字符串连接函数
SELECT 
    product_name,
    category,
    CUSTOM_CONCAT(product_name, category, ' - ') as product_category
FROM product_dim
LIMIT 10;

-- 2. 使用数学幂函数
SELECT 
    product_id,
    price,
    MATH_POWER(price, 2) as price_squared,
    MATH_POWER(price, 0.5) as price_sqrt
FROM product_dim
WHERE price > 0
LIMIT 10;

-- 3. 使用自定义日期格式化
SELECT 
    order_date,
    DATE_FORMAT_CUSTOM(order_date, 'yyyy年MM月dd日') as formatted_date,
    DATE_FORMAT_CUSTOM(order_date, 'E, MMM dd, yyyy') as english_date
FROM sales_fact
LIMIT 10;

-- 4. 使用中位数聚合函数
SELECT 
    category,
    AVG(price) as avg_price,
    MEDIAN(price) as median_price,
    STDDEV_CUSTOM(price) as stddev_price
FROM product_dim
GROUP BY category;

-- 5. 使用百分位数函数
SELECT 
    category,
    PERCENTILE_CUSTOM(price) as p50_price,  -- 50%分位数(中位数)
    MIN(price) as min_price,
    MAX(price) as max_price
FROM product_dim
GROUP BY category;

-- 6. 复杂查询示例:销售分析
SELECT 
    DATE_FORMAT_CUSTOM(order_date, 'yyyy-MM') as month,
    COUNT(*) as order_count,
    SUM(sales_amount) as total_sales,
    AVG(sales_amount) as avg_sales,
    MEDIAN(sales_amount) as median_sales,
    STDDEV_CUSTOM(sales_amount) as sales_stddev,
    PERCENTILE_CUSTOM(sales_amount) as p50_sales
FROM sales_fact
WHERE order_date >= '2023-01-01'
GROUP BY DATE_FORMAT_CUSTOM(order_date, 'yyyy-MM')
ORDER BY month;

-- 7. 产品性能分析
SELECT 
    p.category,
    CUSTOM_CONCAT(p.category, 'Top Products', ' - ') as category_label,
    COUNT(DISTINCT p.product_id) as product_count,
    SUM(s.sales_amount) as total_revenue,
    MEDIAN(s.sales_amount) as median_order_value,
    MATH_POWER(STDDEV_CUSTOM(s.sales_amount), 2) as sales_variance
FROM product_dim p
JOIN sales_fact s ON p.product_id = s.product_id
GROUP BY p.category
HAVING COUNT(DISTINCT p.product_id) >= 5
ORDER BY total_revenue DESC;

10.3 插件机制与扩展

10.3.1 插件架构概述

Kylin的插件机制允许开发者扩展系统功能,包括存储引擎、查询引擎、认证机制等。

// PluginInterface.java - 插件接口定义
package com.example.kylin.plugin;

import java.util.Map;
import java.util.Properties;

/**
 * Kylin插件基础接口
 */
public interface KylinPlugin {
    
    /**
     * 插件初始化
     * @param config 配置参数
     */
    void initialize(Properties config);
    
    /**
     * 获取插件名称
     * @return 插件名称
     */
    String getName();
    
    /**
     * 获取插件版本
     * @return 插件版本
     */
    String getVersion();
    
    /**
     * 获取插件描述
     * @return 插件描述
     */
    String getDescription();
    
    /**
     * 插件启动
     */
    void start();
    
    /**
     * 插件停止
     */
    void stop();
    
    /**
     * 获取插件状态
     * @return 插件状态
     */
    PluginStatus getStatus();
    
    /**
     * 获取插件配置
     * @return 配置信息
     */
    Map<String, Object> getConfiguration();
}

/**
 * 插件状态枚举
 */
enum PluginStatus {
    INITIALIZED,
    STARTING,
    RUNNING,
    STOPPING,
    STOPPED,
    ERROR
}

/**
 * 存储插件接口
 */
public interface StoragePlugin extends KylinPlugin {
    
    /**
     * 创建存储实例
     * @param config 存储配置
     * @return 存储实例
     */
    IStorageEngine createStorageEngine(Properties config);
    
    /**
     * 获取支持的存储类型
     * @return 存储类型列表
     */
    String[] getSupportedStorageTypes();
    
    /**
     * 验证存储配置
     * @param config 配置
     * @return 验证结果
     */
    boolean validateConfiguration(Properties config);
}

/**
 * 查询插件接口
 */
public interface QueryPlugin extends KylinPlugin {
    
    /**
     * 创建查询引擎
     * @param config 查询配置
     * @return 查询引擎实例
     */
    IQueryEngine createQueryEngine(Properties config);
    
    /**
     * 获取支持的查询类型
     * @return 查询类型列表
     */
    String[] getSupportedQueryTypes();
    
    /**
     * 查询优化
     * @param sql 原始SQL
     * @return 优化后的SQL
     */
    String optimizeQuery(String sql);
}

/**
 * 认证插件接口
 */
public interface AuthenticationPlugin extends KylinPlugin {
    
    /**
     * 用户认证
     * @param username 用户名
     * @param password 密码
     * @return 认证结果
     */
    AuthenticationResult authenticate(String username, String password);
    
    /**
     * 获取用户权限
     * @param username 用户名
     * @return 权限列表
     */
    String[] getUserPermissions(String username);
    
    /**
     * 验证用户权限
     * @param username 用户名
     * @param permission 权限
     * @return 是否有权限
     */
    boolean hasPermission(String username, String permission);
}

/**
 * 认证结果
 */
class AuthenticationResult {
    private boolean success;
    private String message;
    private Map<String, Object> userInfo;
    
    public AuthenticationResult(boolean success, String message) {
        this.success = success;
        this.message = message;
    }
    
    // Getters and setters
    public boolean isSuccess() { return success; }
    public void setSuccess(boolean success) { this.success = success; }
    
    public String getMessage() { return message; }
    public void setMessage(String message) { this.message = message; }
    
    public Map<String, Object> getUserInfo() { return userInfo; }
    public void setUserInfo(Map<String, Object> userInfo) { this.userInfo = userInfo; }
}

10.3.2 自定义存储插件

// CustomStoragePlugin.java - 自定义存储插件
package com.example.kylin.plugin.storage;

import com.example.kylin.plugin.*;
import org.apache.kylin.storage.IStorageEngine;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;

/**
 * Redis存储插件示例
 */
public class RedisStoragePlugin implements StoragePlugin {
    
    private PluginStatus status = PluginStatus.INITIALIZED;
    private Properties config;
    private Map<String, Object> configuration = new ConcurrentHashMap<>();
    
    @Override
    public void initialize(Properties config) {
        this.config = config;
        
        // 解析配置
        configuration.put("redis.host", config.getProperty("redis.host", "localhost"));
        configuration.put("redis.port", Integer.parseInt(config.getProperty("redis.port", "6379")));
        configuration.put("redis.database", Integer.parseInt(config.getProperty("redis.database", "0")));
        configuration.put("redis.password", config.getProperty("redis.password"));
        configuration.put("redis.timeout", Integer.parseInt(config.getProperty("redis.timeout", "5000")));
        
        status = PluginStatus.INITIALIZED;
    }
    
    @Override
    public String getName() {
        return "Redis Storage Plugin";
    }
    
    @Override
    public String getVersion() {
        return "1.0.0";
    }
    
    @Override
    public String getDescription() {
        return "Redis-based storage engine for Kylin";
    }
    
    @Override
    public void start() {
        status = PluginStatus.STARTING;
        
        try {
            // 初始化Redis连接
            initializeRedisConnection();
            
            status = PluginStatus.RUNNING;
            
        } catch (Exception e) {
            status = PluginStatus.ERROR;
            throw new RuntimeException("Failed to start Redis storage plugin", e);
        }
    }
    
    @Override
    public void stop() {
        status = PluginStatus.STOPPING;
        
        try {
            // 关闭Redis连接
            closeRedisConnection();
            
            status = PluginStatus.STOPPED;
            
        } catch (Exception e) {
            status = PluginStatus.ERROR;
            throw new RuntimeException("Failed to stop Redis storage plugin", e);
        }
    }
    
    @Override
    public PluginStatus getStatus() {
        return status;
    }
    
    @Override
    public Map<String, Object> getConfiguration() {
        return new HashMap<>(configuration);
    }
    
    @Override
    public IStorageEngine createStorageEngine(Properties config) {
        return new RedisStorageEngine(config);
    }
    
    @Override
    public String[] getSupportedStorageTypes() {
        return new String[]{"redis", "redis-cluster"};
    }
    
    @Override
    public boolean validateConfiguration(Properties config) {
        // 验证必需的配置项
        String host = config.getProperty("redis.host");
        String port = config.getProperty("redis.port");
        
        if (host == null || host.trim().isEmpty()) {
            return false;
        }
        
        try {
            Integer.parseInt(port);
        } catch (NumberFormatException e) {
            return false;
        }
        
        return true;
    }
    
    private void initializeRedisConnection() {
        // Redis连接初始化逻辑
        String host = (String) configuration.get("redis.host");
        Integer port = (Integer) configuration.get("redis.port");
        
        // 这里实现Redis连接逻辑
        System.out.println("Connecting to Redis at " + host +":" + port);
    }
    
    private void closeRedisConnection() {
        // Redis连接关闭逻辑
        System.out.println("Closing Redis connection");
    }
}

/**
 * Redis存储引擎实现
 */
class RedisStorageEngine implements IStorageEngine {
    
    private Properties config;
    private RedisClient redisClient;
    
    public RedisStorageEngine(Properties config) {
        this.config = config;
        this.redisClient = new RedisClient(config);
    }
    
    // 实现IStorageEngine接口方法
    // 这里省略具体实现细节
}

/**
 * Redis客户端封装
 */
class RedisClient {
    
    private Properties config;
    
    public RedisClient(Properties config) {
        this.config = config;
        // 初始化Redis客户端
    }
    
    public void set(String key, String value) {
        // Redis SET操作
    }
    
    public String get(String key) {
        // Redis GET操作
        return null;
    }
    
    public void delete(String key) {
        // Redis DELETE操作
    }
    
    public void close() {
        // 关闭连接
    }
}

10.3.3 自定义认证插件

// LDAPAuthenticationPlugin.java - LDAP认证插件
package com.example.kylin.plugin.auth;

import com.example.kylin.plugin.*;
import javax.naming.*;
import javax.naming.directory.*;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;

/**
 * LDAP认证插件
 */
public class LDAPAuthenticationPlugin implements AuthenticationPlugin {
    
    private PluginStatus status = PluginStatus.INITIALIZED;
    private Properties config;
    private Map<String, Object> configuration = new ConcurrentHashMap<>();
    private DirContext ldapContext;
    
    @Override
    public void initialize(Properties config) {
        this.config = config;
        
        // 解析LDAP配置
        configuration.put("ldap.url", config.getProperty("ldap.url", "ldap://localhost:389"));
        configuration.put("ldap.base.dn", config.getProperty("ldap.base.dn", "dc=example,dc=com"));
        configuration.put("ldap.user.dn.pattern", config.getProperty("ldap.user.dn.pattern", "uid={0},ou=users"));
        configuration.put("ldap.group.search.base", config.getProperty("ldap.group.search.base", "ou=groups"));
        configuration.put("ldap.group.search.filter", config.getProperty("ldap.group.search.filter", "member={0}"));
        configuration.put("ldap.admin.user", config.getProperty("ldap.admin.user"));
        configuration.put("ldap.admin.password", config.getProperty("ldap.admin.password"));
        
        status = PluginStatus.INITIALIZED;
    }
    
    @Override
    public String getName() {
        return "LDAP Authentication Plugin";
    }
    
    @Override
    public String getVersion() {
        return "1.0.0";
    }
    
    @Override
    public String getDescription() {
        return "LDAP-based authentication for Kylin";
    }
    
    @Override
    public void start() {
        status = PluginStatus.STARTING;
        
        try {
            // 初始化LDAP连接
            initializeLDAPConnection();
            
            status = PluginStatus.RUNNING;
            
        } catch (Exception e) {
            status = PluginStatus.ERROR;
            throw new RuntimeException("Failed to start LDAP authentication plugin", e);
        }
    }
    
    @Override
    public void stop() {
        status = PluginStatus.STOPPING;
        
        try {
            // 关闭LDAP连接
            if (ldapContext != null) {
                ldapContext.close();
            }
            
            status = PluginStatus.STOPPED;
            
        } catch (Exception e) {
            status = PluginStatus.ERROR;
            throw new RuntimeException("Failed to stop LDAP authentication plugin", e);
        }
    }
    
    @Override
    public PluginStatus getStatus() {
        return status;
    }
    
    @Override
    public Map<String, Object> getConfiguration() {
        return new HashMap<>(configuration);
    }
    
    @Override
    public AuthenticationResult authenticate(String username, String password) {
        try {
            // 构建用户DN
            String userDnPattern = (String) configuration.get("ldap.user.dn.pattern");
            String baseDn = (String) configuration.get("ldap.base.dn");
            String userDn = userDnPattern.replace("{0}", username) + "," + baseDn;
            
            // 尝试绑定用户
            Hashtable<String, String> env = new Hashtable<>();
            env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
            env.put(Context.PROVIDER_URL, (String) configuration.get("ldap.url"));
            env.put(Context.SECURITY_AUTHENTICATION, "simple");
            env.put(Context.SECURITY_PRINCIPAL, userDn);
            env.put(Context.SECURITY_CREDENTIALS, password);
            
            DirContext userContext = new InitialDirContext(env);
            userContext.close();
            
            // 获取用户信息
            Map<String, Object> userInfo = getUserInfo(username);
            
            AuthenticationResult result = new AuthenticationResult(true, "Authentication successful");
            result.setUserInfo(userInfo);
            
            return result;
            
        } catch (AuthenticationException e) {
            return new AuthenticationResult(false, "Invalid username or password");
        } catch (Exception e) {
            return new AuthenticationResult(false, "Authentication error: " + e.getMessage());
        }
    }
    
    @Override
    public String[] getUserPermissions(String username) {
        try {
            List<String> permissions = new ArrayList<>();
            
            // 搜索用户所属的组
            String groupSearchBase = (String) configuration.get("ldap.group.search.base");
            String groupSearchFilter = (String) configuration.get("ldap.group.search.filter");
            String baseDn = (String) configuration.get("ldap.base.dn");
            
            String userDnPattern = (String) configuration.get("ldap.user.dn.pattern");
            String userDn = userDnPattern.replace("{0}", username) + "," + baseDn;
            
            SearchControls searchControls = new SearchControls();
            searchControls.setSearchScope(SearchControls.SUBTREE_SCOPE);
            
            String filter = groupSearchFilter.replace("{0}", userDn);
            NamingEnumeration<SearchResult> results = ldapContext.search(
                groupSearchBase + "," + baseDn, 
                filter, 
                searchControls
            );
            
            while (results.hasMore()) {
                SearchResult result = results.next();
                String groupName = result.getName();
                
                // 根据组名映射权限
                permissions.addAll(mapGroupToPermissions(groupName));
            }
            
            return permissions.toArray(new String[0]);
            
        } catch (Exception e) {
            return new String[0];
        }
    }
    
    @Override
    public boolean hasPermission(String username, String permission) {
        String[] permissions = getUserPermissions(username);
        return Arrays.asList(permissions).contains(permission);
    }
    
    private void initializeLDAPConnection() throws NamingException {
        Hashtable<String, String> env = new Hashtable<>();
        env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
        env.put(Context.PROVIDER_URL, (String) configuration.get("ldap.url"));
        
        String adminUser = (String) configuration.get("ldap.admin.user");
        String adminPassword = (String) configuration.get("ldap.admin.password");
        
        if (adminUser != null && adminPassword != null) {
            env.put(Context.SECURITY_AUTHENTICATION, "simple");
            env.put(Context.SECURITY_PRINCIPAL, adminUser);
            env.put(Context.SECURITY_CREDENTIALS, adminPassword);
        }
        
        ldapContext = new InitialDirContext(env);
    }
    
    private Map<String, Object> getUserInfo(String username) {
        Map<String, Object> userInfo = new HashMap<>();
        
        try {
            String userDnPattern = (String) configuration.get("ldap.user.dn.pattern");
            String baseDn = (String) configuration.get("ldap.base.dn");
            String userDn = userDnPattern.replace("{0}", username) + "," + baseDn;
            
            Attributes attributes = ldapContext.getAttributes(userDn);
            
            // 提取用户属性
            if (attributes.get("cn") != null) {
                userInfo.put("displayName", attributes.get("cn").get());
            }
            
            if (attributes.get("mail") != null) {
                userInfo.put("email", attributes.get("mail").get());
            }
            
            if (attributes.get("telephoneNumber") != null) {
                userInfo.put("phone", attributes.get("telephoneNumber").get());
            }
            
            userInfo.put("username", username);
            
        } catch (Exception e) {
            // 忽略错误,返回基本信息
            userInfo.put("username", username);
        }
        
        return userInfo;
    }
    
    private List<String> mapGroupToPermissions(String groupName) {
        List<String> permissions = new ArrayList<>();
        
        // 根据组名映射权限
        if (groupName.contains("admin")) {
            permissions.add("ADMIN");
            permissions.add("READ");
            permissions.add("WRITE");
            permissions.add("MANAGE_CUBE");
            permissions.add("MANAGE_PROJECT");
        } else if (groupName.contains("developer")) {
            permissions.add("READ");
            permissions.add("WRITE");
            permissions.add("MANAGE_CUBE");
        } else if (groupName.contains("analyst")) {
            permissions.add("READ");
        }
        
        return permissions;
    }
}

10.3.4 插件管理器

// PluginManager.java - 插件管理器
package com.example.kylin.plugin;

import java.io.File;
import java.net.URL;
import java.net.URLClassLoader;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.jar.JarFile;
import java.util.jar.Manifest;

/**
 * Kylin插件管理器
 */
public class PluginManager {
    
    private static final String PLUGIN_MANIFEST_ATTRIBUTE = "Kylin-Plugin-Class";
    private static final String PLUGIN_DIR = "plugins";
    
    private Map<String, KylinPlugin> loadedPlugins = new ConcurrentHashMap<>();
    private Map<String, ClassLoader> pluginClassLoaders = new ConcurrentHashMap<>();
    private String pluginDirectory;
    
    public PluginManager(String kylinHome) {
        this.pluginDirectory = kylinHome + File.separator + PLUGIN_DIR;
    }
    
    /**
     * 加载所有插件
     */
    public void loadAllPlugins() {
        File pluginDir = new File(pluginDirectory);
        
        if (!pluginDir.exists() || !pluginDir.isDirectory()) {
            System.out.println("Plugin directory not found: " + pluginDirectory);
            return;
        }
        
        File[] jarFiles = pluginDir.listFiles((dir, name) -> name.endsWith(".jar"));
        
        if (jarFiles != null) {
            for (File jarFile : jarFiles) {
                try {
                    loadPlugin(jarFile);
                } catch (Exception e) {
                    System.err.println("Failed to load plugin: " + jarFile.getName() + ", " + e.getMessage());
                }
            }
        }
    }
    
    /**
     * 加载单个插件
     */
    public void loadPlugin(File jarFile) throws Exception {
        // 读取JAR文件的Manifest
        JarFile jar = new JarFile(jarFile);
        Manifest manifest = jar.getManifest();
        
        if (manifest == null) {
            throw new Exception("No manifest found in " + jarFile.getName());
        }
        
        String pluginClassName = manifest.getMainAttributes().getValue(PLUGIN_MANIFEST_ATTRIBUTE);
        
        if (pluginClassName == null) {
            throw new Exception("No plugin class specified in manifest of " + jarFile.getName());
        }
        
        // 创建插件类加载器
        URL[] urls = {jarFile.toURI().toURL()};
        URLClassLoader classLoader = new URLClassLoader(urls, this.getClass().getClassLoader());
        
        // 加载插件类
        Class<?> pluginClass = classLoader.loadClass(pluginClassName);
        
        if (!KylinPlugin.class.isAssignableFrom(pluginClass)) {
            throw new Exception("Plugin class must implement KylinPlugin interface");
        }
        
        // 创建插件实例
        KylinPlugin plugin = (KylinPlugin) pluginClass.newInstance();
        
        // 加载插件配置
        Properties pluginConfig = loadPluginConfiguration(jarFile.getName());
        
        // 初始化插件
        plugin.initialize(pluginConfig);
        
        // 注册插件
        String pluginName = plugin.getName();
        loadedPlugins.put(pluginName, plugin);
        pluginClassLoaders.put(pluginName, classLoader);
        
        System.out.println("Loaded plugin: " + pluginName + " v" + plugin.getVersion());
        
        jar.close();
    }
    
    /**
     * 启动插件
     */
    public void startPlugin(String pluginName) {
        KylinPlugin plugin = loadedPlugins.get(pluginName);
        
        if (plugin == null) {
            throw new IllegalArgumentException("Plugin not found: " + pluginName);
        }
        
        if (plugin.getStatus() == PluginStatus.INITIALIZED || 
            plugin.getStatus() == PluginStatus.STOPPED) {
            plugin.start();
            System.out.println("Started plugin: " + pluginName);
        }
    }
    
    /**
     * 停止插件
     */
    public void stopPlugin(String pluginName) {
        KylinPlugin plugin = loadedPlugins.get(pluginName);
        
        if (plugin == null) {
            throw new IllegalArgumentException("Plugin not found: " + pluginName);
        }
        
        if (plugin.getStatus() == PluginStatus.RUNNING) {
            plugin.stop();
            System.out.println("Stopped plugin: " + pluginName);
        }
    }
    
    /**
     * 卸载插件
     */
    public void unloadPlugin(String pluginName) {
        KylinPlugin plugin = loadedPlugins.get(pluginName);
        
        if (plugin != null) {
            // 先停止插件
            if (plugin.getStatus() == PluginStatus.RUNNING) {
                plugin.stop();
            }
            
            // 移除插件
            loadedPlugins.remove(pluginName);
            
            // 关闭类加载器
            ClassLoader classLoader = pluginClassLoaders.remove(pluginName);
            if (classLoader instanceof URLClassLoader) {
                try {
                    ((URLClassLoader) classLoader).close();
                } catch (Exception e) {
                    System.err.println("Failed to close class loader for plugin: " + pluginName);
                }
            }
            
            System.out.println("Unloaded plugin: " + pluginName);
        }
    }
    
    /**
     * 启动所有插件
     */
    public void startAllPlugins() {
        for (String pluginName : loadedPlugins.keySet()) {
            try {
                startPlugin(pluginName);
            } catch (Exception e) {
                System.err.println("Failed to start plugin: " + pluginName + ", " + e.getMessage());
            }
        }
    }
    
    /**
     * 停止所有插件
     */
    public void stopAllPlugins() {
        for (String pluginName : loadedPlugins.keySet()) {
            try {
                stopPlugin(pluginName);
            } catch (Exception e) {
                System.err.println("Failed to stop plugin: " + pluginName + ", " + e.getMessage());
            }
        }
    }
    
    /**
     * 获取插件列表
     */
    public List<PluginInfo> getPluginList() {
        List<PluginInfo> pluginList = new ArrayList<>();
        
        for (KylinPlugin plugin : loadedPlugins.values()) {
            PluginInfo info = new PluginInfo();
            info.setName(plugin.getName());
            info.setVersion(plugin.getVersion());
            info.setDescription(plugin.getDescription());
            info.setStatus(plugin.getStatus());
            info.setConfiguration(plugin.getConfiguration());
            
            pluginList.add(info);
        }
        
        return pluginList;
    }
    
    /**
     * 获取指定类型的插件
     */
    @SuppressWarnings("unchecked")
    public <T extends KylinPlugin> List<T> getPluginsByType(Class<T> pluginType) {
        List<T> plugins = new ArrayList<>();
        
        for (KylinPlugin plugin : loadedPlugins.values()) {
            if (pluginType.isAssignableFrom(plugin.getClass())) {
                plugins.add((T) plugin);
            }
        }
        
        return plugins;
    }
    
    /**
     * 获取插件
     */
    public KylinPlugin getPlugin(String pluginName) {
        return loadedPlugins.get(pluginName);
    }
    
    /**
     * 重新加载插件
     */
    public void reloadPlugin(String pluginName) {
        // 先卸载插件
        unloadPlugin(pluginName);
        
        // 重新加载插件
        File pluginDir = new File(pluginDirectory);
        File[] jarFiles = pluginDir.listFiles((dir, name) -> 
            name.endsWith(".jar") && name.contains(pluginName));
        
        if (jarFiles != null && jarFiles.length > 0) {
            try {
                loadPlugin(jarFiles[0]);
                startPlugin(pluginName);
            } catch (Exception e) {
                System.err.println("Failed to reload plugin: " + pluginName + ", " + e.getMessage());
            }
        }
    }
    
    /**
     * 加载插件配置
     */
    private Properties loadPluginConfiguration(String jarFileName) {
        Properties config = new Properties();
        
        // 从配置文件加载插件配置
        String configFileName = jarFileName.replace(".jar", ".properties");
        File configFile = new File(pluginDirectory, configFileName);
        
        if (configFile.exists()) {
            try (FileInputStream fis = new FileInputStream(configFile)) {
                config.load(fis);
            } catch (Exception e) {
                System.err.println("Failed to load plugin configuration: " + configFileName);
            }
        }
        
        return config;
    }
    
    /**
     * 关闭插件管理器
     */
    public void shutdown() {
        stopAllPlugins();
        
        for (String pluginName : new ArrayList<>(loadedPlugins.keySet())) {
            unloadPlugin(pluginName);
        }
    }
}

/**
 * 插件信息
 */
class PluginInfo {
    private String name;
    private String version;
    private String description;
    private PluginStatus status;
    private Map<String, Object> configuration;
    
    // Getters and setters
    public String getName() { return name; }
    public void setName(String name) { this.name = name; }
    
    public String getVersion() { return version; }
    public void setVersion(String version) { this.version = version; }
    
    public String getDescription() { return description; }
    public void setDescription(String description) { this.description = description; }
    
    public PluginStatus getStatus() { return status; }
    public void setStatus(PluginStatus status) { this.status = status; }
    
    public Map<String, Object> getConfiguration() { return configuration; }
    public void setConfiguration(Map<String, Object> configuration) { this.configuration = configuration; }
}

10.3.5 插件配置和部署

#!/bin/bash
# deploy_plugin.sh - 插件部署脚本

set -e

# 配置
KYLIN_HOME=${KYLIN_HOME:-"/opt/kylin"}
PLUGIN_DIR="$KYLIN_HOME/plugins"
PLUGIN_JAR="$1"
PLUGIN_CONFIG="$2"

if [ -z "$PLUGIN_JAR" ]; then
    echo "用法: $0 <plugin.jar> [plugin.properties]"
    exit 1
fi

if [ ! -f "$PLUGIN_JAR" ]; then
    echo "错误:插件JAR文件不存在: $PLUGIN_JAR"
    exit 1
fi

echo "开始部署插件: $PLUGIN_JAR"

# 1. 创建插件目录
mkdir -p "$PLUGIN_DIR"

# 2. 复制插件JAR文件
cp "$PLUGIN_JAR" "$PLUGIN_DIR/"
echo "已复制插件JAR文件到: $PLUGIN_DIR"

# 3. 复制配置文件(如果提供)
if [ -n "$PLUGIN_CONFIG" ] && [ -f "$PLUGIN_CONFIG" ]; then
    cp "$PLUGIN_CONFIG" "$PLUGIN_DIR/"
    echo "已复制插件配置文件到: $PLUGIN_DIR"
fi

# 4. 验证插件JAR文件
echo "验证插件JAR文件..."
jar tf "$PLUGIN_JAR" | grep -q "META-INF/MANIFEST.MF" || {
    echo "错误:插件JAR文件缺少MANIFEST.MF"
    exit 1
}

# 检查Manifest中的插件类
PLUGIN_CLASS=$(jar xf "$PLUGIN_JAR" META-INF/MANIFEST.MF -O | grep "Kylin-Plugin-Class:" | cut -d' ' -f2 | tr -d '\r')
if [ -z "$PLUGIN_CLASS" ]; then
    echo "错误:插件JAR文件的MANIFEST.MF中缺少Kylin-Plugin-Class属性"
    exit 1
fi

echo "插件类: $PLUGIN_CLASS"

# 5. 重启Kylin服务以加载插件
echo "重启Kylin服务以加载插件..."
"$KYLIN_HOME/bin/kylin.sh" stop
sleep 5
"$KYLIN_HOME/bin/kylin.sh" start

echo "插件部署完成!"
echo "插件将在Kylin启动时自动加载"
# redis-storage-plugin.properties - Redis存储插件配置
# Redis服务器配置
redis.host=localhost
redis.port=6379
redis.database=0
redis.password=
redis.timeout=5000
redis.max.connections=100
redis.min.idle=10
redis.max.idle=50

# 集群配置(可选)
redis.cluster.enabled=false
redis.cluster.nodes=localhost:7000,localhost:7001,localhost:7002
redis.cluster.max.redirects=3

# 缓存配置
redis.cache.ttl=3600
redis.cache.prefix=kylin:
redis.cache.compression=true

# 性能配置
redis.pipeline.size=100
redis.batch.size=1000
redis.async.enabled=true
<!-- MANIFEST.MF示例 -->
Manifest-Version: 1.0
Kylin-Plugin-Class: com.example.kylin.plugin.storage.RedisStoragePlugin
Plugin-Name: Redis Storage Plugin
Plugin-Version: 1.0.0
Plugin-Description: Redis-based storage engine for Apache Kylin
Plugin-Author: Example Corp
Plugin-Website: https://example.com
Main-Class: com.example.kylin.plugin.storage.RedisStoragePlugin

10.4 存储引擎扩展

10.4.1 存储引擎架构

// CustomStorageEngine.java - 自定义存储引擎
package com.example.kylin.storage;

import org.apache.kylin.storage.*;
import org.apache.kylin.metadata.model.*;
import org.apache.kylin.metadata.realization.*;
import java.util.*;
import java.util.concurrent.*;

/**
 * 分布式存储引擎实现
 */
public class DistributedStorageEngine implements IStorageEngine {
    
    private StorageConfiguration config;
    private ConnectionPool connectionPool;
    private QueryOptimizer queryOptimizer;
    private CacheManager cacheManager;
    private MetricsCollector metricsCollector;
    
    public DistributedStorageEngine(StorageConfiguration config) {
        this.config = config;
        this.connectionPool = new ConnectionPool(config);
        this.queryOptimizer = new QueryOptimizer(config);
        this.cacheManager = new CacheManager(config);
        this.metricsCollector = new MetricsCollector();
    }
    
    @Override
    public IStorageQuery createQuery(IRealization realization) {
        return new DistributedStorageQuery(realization, this);
    }
    
    @Override
    public void buildCube(CubeInstance cube, CubeBuildTypeEnum buildType) {
        try {
            metricsCollector.startTimer("cube.build");
            
            // 获取构建配置
            CubeBuildConfig buildConfig = createBuildConfig(cube, buildType);
            
            // 并行构建Cube段
            List<CubeSegment> segments = cube.getSegments();
            ExecutorService executor = Executors.newFixedThreadPool(
                config.getBuildParallelism()
            );
            
            List<Future<Void>> futures = new ArrayList<>();
            
            for (CubeSegment segment : segments) {
                Future<Void> future = executor.submit(() -> {
                    buildSegment(segment, buildConfig);
                    return null;
                });
                futures.add(future);
            }
            
            // 等待所有段构建完成
            for (Future<Void> future : futures) {
                future.get();
            }
            
            executor.shutdown();
            
            // 更新元数据
            updateCubeMetadata(cube);
            
        } catch (Exception e) {
            throw new RuntimeException("Failed to build cube: " + cube.getName(), e);
        } finally {
            metricsCollector.stopTimer("cube.build");
        }
    }
    
    @Override
    public void deleteCube(CubeInstance cube) {
        try {
            metricsCollector.startTimer("cube.delete");
            
            // 删除所有段数据
            for (CubeSegment segment : cube.getSegments()) {
                deleteSegmentData(segment);
            }
            
            // 清理缓存
            cacheManager.evictCube(cube.getName());
            
            // 删除元数据
            deleteCubeMetadata(cube);
            
        } catch (Exception e) {
            throw new RuntimeException("Failed to delete cube: " + cube.getName(), e);
        } finally {
            metricsCollector.stopTimer("cube.delete");
        }
    }
    
    @Override
    public long getStorageSize(String cubeName) {
        try {
            return calculateStorageSize(cubeName);
        } catch (Exception e) {
            return 0L;
        }
    }
    
    @Override
    public void cleanupStorage() {
        try {
            metricsCollector.startTimer("storage.cleanup");
            
            // 清理过期数据
            cleanupExpiredData();
            
            // 压缩存储
            compactStorage();
            
            // 清理缓存
            cacheManager.cleanup();
            
        } catch (Exception e) {
            throw new RuntimeException("Failed to cleanup storage", e);
        } finally {
            metricsCollector.stopTimer("storage.cleanup");
        }
    }
    
    /**
     * 构建Cube段
     */
    private void buildSegment(CubeSegment segment, CubeBuildConfig config) {
        try {
            // 1. 读取源数据
            DataReader dataReader = createDataReader(segment);
            
            // 2. 数据预处理
            DataProcessor processor = new DataProcessor(config);
            
            // 3. 聚合计算
            AggregationEngine aggregator = new AggregationEngine(config);
            
            // 4. 数据写入
            DataWriter dataWriter = createDataWriter(segment);
            
            // 流式处理数据
            dataReader.read(data -> {
                // 预处理
                ProcessedData processed = processor.process(data);
                
                // 聚合
                AggregatedData aggregated = aggregator.aggregate(processed);
                
                // 写入
                dataWriter.write(aggregated);
            });
            
            // 完成写入
            dataWriter.flush();
            dataWriter.close();
            
        } catch (Exception e) {
            throw new RuntimeException("Failed to build segment: " + segment.getName(), e);
        }
    }
    
    /**
     * 创建数据读取器
     */
    private DataReader createDataReader(CubeSegment segment) {
        String sourceType = config.getSourceType();
        
        switch (sourceType.toLowerCase()) {
            case "hive":
                return new HiveDataReader(segment, config);
            case "kafka":
                return new KafkaDataReader(segment, config);
            case "hdfs":
                return new HDFSDataReader(segment, config);
            default:
                throw new IllegalArgumentException("Unsupported source type: " + sourceType);
        }
    }
    
    /**
     * 创建数据写入器
     */
    private DataWriter createDataWriter(CubeSegment segment) {
        String storageType = config.getStorageType();
        
        switch (storageType.toLowerCase()) {
            case "hbase":
                return new HBaseDataWriter(segment, config, connectionPool);
            case "parquet":
                return new ParquetDataWriter(segment, config);
            case "redis":
                return new RedisDataWriter(segment, config, connectionPool);
            case "elasticsearch":
                return new ElasticsearchDataWriter(segment, config, connectionPool);
            default:
                throw new IllegalArgumentException("Unsupported storage type: " + storageType);
        }
    }
    
    /**
     * 计算存储大小
     */
    private long calculateStorageSize(String cubeName) {
        long totalSize = 0L;
        
        try {
            // 根据存储类型计算大小
            String storageType = config.getStorageType();
            
            switch (storageType.toLowerCase()) {
                case "hbase":
                    totalSize = calculateHBaseSize(cubeName);
                    break;
                case "parquet":
                    totalSize = calculateParquetSize(cubeName);
                    break;
                case "redis":
                    totalSize = calculateRedisSize(cubeName);
                    break;
                default:
                    totalSize = 0L;
            }
            
        } catch (Exception e) {
            // 记录错误但不抛出异常
            System.err.println("Failed to calculate storage size for cube: " + cubeName);
        }
        
        return totalSize;
    }
    
    private long calculateHBaseSize(String cubeName) {
        // HBase大小计算逻辑
        return 0L;
    }
    
    private long calculateParquetSize(String cubeName) {
        // Parquet文件大小计算逻辑
        return 0L;
    }
    
    private long calculateRedisSize(String cubeName) {
        // Redis内存使用计算逻辑
        return 0L;
    }
    
    /**
     * 清理过期数据
     */
    private void cleanupExpiredData() {
        // 实现过期数据清理逻辑
    }
    
    /**
     * 压缩存储
     */
    private void compactStorage() {
        // 实现存储压缩逻辑
    }
    
    /**
     * 更新Cube元数据
     */
    private void updateCubeMetadata(CubeInstance cube) {
        // 实现元数据更新逻辑
    }
    
    /**
     * 删除段数据
     */
    private void deleteSegmentData(CubeSegment segment) {
        // 实现段数据删除逻辑
    }
    
    /**
     * 删除Cube元数据
     */
    private void deleteCubeMetadata(CubeInstance cube) {
        // 实现元数据删除逻辑
    }
    
    /**
     * 创建构建配置
     */
    private CubeBuildConfig createBuildConfig(CubeInstance cube, CubeBuildTypeEnum buildType) {
        CubeBuildConfig config = new CubeBuildConfig();
        config.setCube(cube);
        config.setBuildType(buildType);
        config.setParallelism(this.config.getBuildParallelism());
        config.setBatchSize(this.config.getBatchSize());
        return config;
    }
}

/**
 * 存储配置类
 */
class StorageConfiguration {
    private String storageType;
    private String sourceType;
    private int buildParallelism = 4;
    private int batchSize = 10000;
    private Properties properties;
    
    // Getters and setters
    public String getStorageType() { return storageType; }
    public void setStorageType(String storageType) { this.storageType = storageType; }
    
    public String getSourceType() { return sourceType; }
    public void setSourceType(String sourceType) { this.sourceType = sourceType; }
    
    public int getBuildParallelism() { return buildParallelism; }
    public void setBuildParallelism(int buildParallelism) { this.buildParallelism = buildParallelism; }
    
    public int getBatchSize() { return batchSize; }
    public void setBatchSize(int batchSize) { this.batchSize = batchSize; }
    
    public Properties getProperties() { return properties; }
    public void setProperties(Properties properties) { this.properties = properties; }
}

/**
 * Cube构建配置
 */
class CubeBuildConfig {
    private CubeInstance cube;
    private CubeBuildTypeEnum buildType;
    private int parallelism;
    private int batchSize;
    
    // Getters and setters
    public CubeInstance getCube() { return cube; }
    public void setCube(CubeInstance cube) { this.cube = cube; }
    
    public CubeBuildTypeEnum getBuildType() { return buildType; }
    public void setBuildType(CubeBuildTypeEnum buildType) { this.buildType = buildType; }
    
    public int getParallelism() { return parallelism; }
    public void setParallelism(int parallelism) { this.parallelism = parallelism; }
    
    public int getBatchSize() { return batchSize; }
     public void setBatchSize(int batchSize) { this.batchSize = batchSize; }
 }

10.4.2 数据读写器实现

// DataReaderWriter.java - 数据读写器实现
package com.example.kylin.storage.io;

import java.util.function.Consumer;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.LinkedBlockingQueue;

/**
 * 数据读取器接口
 */
interface DataReader {
    void read(Consumer<RawData> dataConsumer);
    void close();
}

/**
 * 数据写入器接口
 */
interface DataWriter {
    void write(AggregatedData data);
    void flush();
    void close();
}

/**
 * Kafka数据读取器
 */
class KafkaDataReader implements DataReader {
    private CubeSegment segment;
    private StorageConfiguration config;
    private KafkaConsumer<String, String> consumer;
    
    public KafkaDataReader(CubeSegment segment, StorageConfiguration config) {
        this.segment = segment;
        this.config = config;
        this.consumer = createKafkaConsumer();
    }
    
    @Override
    public void read(Consumer<RawData> dataConsumer) {
        try {
            // 订阅主题
            String topic = config.getProperties().getProperty("kafka.topic");
            consumer.subscribe(Arrays.asList(topic));
            
            // 持续读取数据
            while (true) {
                ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));
                
                for (ConsumerRecord<String, String> record : records) {
                    RawData data = parseRecord(record);
                    if (data != null) {
                        dataConsumer.accept(data);
                    }
                }
                
                // 检查是否应该停止
                if (shouldStop()) {
                    break;
                }
            }
            
        } catch (Exception e) {
            throw new RuntimeException("Failed to read from Kafka", e);
        }
    }
    
    @Override
    public void close() {
        if (consumer != null) {
            consumer.close();
        }
    }
    
    private KafkaConsumer<String, String> createKafkaConsumer() {
        Properties props = new Properties();
        props.put("bootstrap.servers", config.getProperties().getProperty("kafka.bootstrap.servers"));
        props.put("group.id", "kylin-cube-builder");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        
        return new KafkaConsumer<>(props);
    }
    
    private RawData parseRecord(ConsumerRecord<String, String> record) {
        // 解析Kafka记录为原始数据
        return new RawData(record.value());
    }
    
    private boolean shouldStop() {
        // 检查停止条件
        return false;
    }
}

/**
 * Elasticsearch数据写入器
 */
class ElasticsearchDataWriter implements DataWriter {
    private CubeSegment segment;
    private StorageConfiguration config;
    private ConnectionPool connectionPool;
    private ElasticsearchClient client;
    private BlockingQueue<AggregatedData> writeQueue;
    private Thread writerThread;
    private volatile boolean running = true;
    
    public ElasticsearchDataWriter(CubeSegment segment, StorageConfiguration config, ConnectionPool connectionPool) {
        this.segment = segment;
        this.config = config;
        this.connectionPool = connectionPool;
        this.client = connectionPool.getElasticsearchClient();
        this.writeQueue = new LinkedBlockingQueue<>(config.getBatchSize());
        
        // 启动写入线程
        startWriterThread();
    }
    
    @Override
    public void write(AggregatedData data) {
        try {
            writeQueue.put(data);
        } catch (InterruptedException e) {
            Thread.currentThread().interrupt();
            throw new RuntimeException("Interrupted while writing data", e);
        }
    }
    
    @Override
    public void flush() {
        // 等待队列清空
        while (!writeQueue.isEmpty()) {
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
                break;
            }
        }
        
        // 刷新Elasticsearch索引
        client.indices().refresh(RefreshRequest.of(r -> r.index(getIndexName())));
    }
    
    @Override
    public void close() {
        running = false;
        
        if (writerThread != null) {
            try {
                writerThread.join(5000);
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
            }
        }
        
        connectionPool.returnElasticsearchClient(client);
    }
    
    private void startWriterThread() {
        writerThread = new Thread(() -> {
            List<AggregatedData> batch = new ArrayList<>();
            
            while (running || !writeQueue.isEmpty()) {
                try {
                    // 收集批次数据
                    AggregatedData data = writeQueue.poll(1, TimeUnit.SECONDS);
                    if (data != null) {
                        batch.add(data);
                    }
                    
                    // 批量写入
                    if (batch.size() >= config.getBatchSize() || (!running && !batch.isEmpty())) {
                        writeBatch(batch);
                        batch.clear();
                    }
                    
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                    break;
                } catch (Exception e) {
                    System.err.println("Error writing batch to Elasticsearch: " + e.getMessage());
                }
            }
        });
        
        writerThread.start();
    }
    
    private void writeBatch(List<AggregatedData> batch) {
        try {
            BulkRequest.Builder bulkBuilder = new BulkRequest.Builder();
            
            for (AggregatedData data : batch) {
                IndexRequest<Map<String, Object>> indexRequest = IndexRequest.of(i -> i
                    .index(getIndexName())
                    .document(data.toMap())
                );
                
                bulkBuilder.operations(op -> op.index(indexRequest));
            }
            
            BulkResponse response = client.bulk(bulkBuilder.build());
            
            if (response.errors()) {
                System.err.println("Bulk write had errors");
            }
            
        } catch (Exception e) {
            throw new RuntimeException("Failed to write batch to Elasticsearch", e);
        }
    }
    
    private String getIndexName() {
        return "kylin_" + segment.getCubeInstance().getName().toLowerCase() + "_" + segment.getName();
    }
}

/**
 * 原始数据类
 */
class RawData {
    private String content;
    private Map<String, Object> fields;
    
    public RawData(String content) {
        this.content = content;
        this.fields = parseContent(content);
    }
    
    private Map<String, Object> parseContent(String content) {
        // 解析内容为字段映射
        Map<String, Object> fields = new HashMap<>();
        // 实现解析逻辑
        return fields;
    }
    
    public String getContent() { return content; }
    public Map<String, Object> getFields() { return fields; }
}

/**
 * 处理后数据类
 */
class ProcessedData {
    private Map<String, Object> dimensions;
    private Map<String, Object> measures;
    
    public ProcessedData(Map<String, Object> dimensions, Map<String, Object> measures) {
        this.dimensions = dimensions;
        this.measures = measures;
    }
    
    public Map<String, Object> getDimensions() { return dimensions; }
    public Map<String, Object> getMeasures() { return measures; }
}

/**
 * 聚合数据类
 */
class AggregatedData {
    private Map<String, Object> dimensionKey;
    private Map<String, Object> measureValues;
    
    public AggregatedData(Map<String, Object> dimensionKey, Map<String, Object> measureValues) {
        this.dimensionKey = dimensionKey;
        this.measureValues = measureValues;
    }
    
    public Map<String, Object> getDimensionKey() { return dimensionKey; }
    public Map<String, Object> getMeasureValues() { return measureValues; }
    
    public Map<String, Object> toMap() {
        Map<String, Object> result = new HashMap<>();
        result.putAll(dimensionKey);
        result.putAll(measureValues);
        return result;
    }
}

10.5 高级调优技巧

10.5.1 内存优化

// MemoryOptimizer.java - 内存优化器
package com.example.kylin.optimization;

import java.lang.management.ManagementFactory;
import java.lang.management.MemoryMXBean;
import java.lang.management.MemoryUsage;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;

/**
 * Kylin内存优化器
 */
public class MemoryOptimizer {
    
    private static final double MEMORY_THRESHOLD = 0.8; // 80%内存使用阈值
    private static final long CLEANUP_INTERVAL = 30; // 30秒清理间隔
    
    private MemoryMXBean memoryBean;
    private ScheduledExecutorService scheduler;
    private CacheManager cacheManager;
    private QueryResultCache queryCache;
    private MetadataCache metadataCache;
    
    public MemoryOptimizer(CacheManager cacheManager, QueryResultCache queryCache, MetadataCache metadataCache) {
        this.memoryBean = ManagementFactory.getMemoryMXBean();
        this.scheduler = Executors.newScheduledThreadPool(1);
        this.cacheManager = cacheManager;
        this.queryCache = queryCache;
        this.metadataCache = metadataCache;
    }
    
    /**
     * 启动内存监控
     */
    public void startMonitoring() {
        scheduler.scheduleAtFixedRate(this::checkMemoryUsage, 0, CLEANUP_INTERVAL, TimeUnit.SECONDS);
    }
    
    /**
     * 停止内存监控
     */
    public void stopMonitoring() {
        scheduler.shutdown();
    }
    
    /**
     * 检查内存使用情况
     */
    private void checkMemoryUsage() {
        MemoryUsage heapUsage = memoryBean.getHeapMemoryUsage();
        double usageRatio = (double) heapUsage.getUsed() / heapUsage.getMax();
        
        System.out.println(String.format("Heap memory usage: %.2f%% (%d MB / %d MB)", 
            usageRatio * 100, 
            heapUsage.getUsed() / 1024 / 1024,
            heapUsage.getMax() / 1024 / 1024));
        
        if (usageRatio > MEMORY_THRESHOLD) {
            System.out.println("Memory usage exceeds threshold, triggering cleanup...");
            performMemoryCleanup();
        }
    }
    
    /**
     * 执行内存清理
     */
    private void performMemoryCleanup() {
        try {
            // 1. 清理查询结果缓存
            int queryEvicted = queryCache.evictLRU(0.3); // 清理30%的LRU条目
            System.out.println("Evicted " + queryEvicted + " query cache entries");
            
            // 2. 清理元数据缓存
            int metadataEvicted = metadataCache.evictExpired();
            System.out.println("Evicted " + metadataEvicted + " expired metadata entries");
            
            // 3. 清理临时对象
            cacheManager.clearTemporaryObjects();
            
            // 4. 强制垃圾回收
            System.gc();
            
            // 5. 等待GC完成并检查效果
            Thread.sleep(1000);
            
            MemoryUsage afterCleanup = memoryBean.getHeapMemoryUsage();
            double newUsageRatio = (double) afterCleanup.getUsed() / afterCleanup.getMax();
            
            System.out.println(String.format("Memory cleanup completed. New usage: %.2f%%", 
                newUsageRatio * 100));
            
        } catch (Exception e) {
            System.err.println("Error during memory cleanup: " + e.getMessage());
        }
    }
    
    /**
     * 获取内存使用统计
     */
    public MemoryStats getMemoryStats() {
        MemoryUsage heapUsage = memoryBean.getHeapMemoryUsage();
        MemoryUsage nonHeapUsage = memoryBean.getNonHeapMemoryUsage();
        
        MemoryStats stats = new MemoryStats();
        stats.setHeapUsed(heapUsage.getUsed());
        stats.setHeapMax(heapUsage.getMax());
        stats.setHeapCommitted(heapUsage.getCommitted());
        stats.setNonHeapUsed(nonHeapUsage.getUsed());
        stats.setNonHeapMax(nonHeapUsage.getMax());
        stats.setNonHeapCommitted(nonHeapUsage.getCommitted());
        
        return stats;
    }
    
    /**
     * 优化JVM参数建议
     */
    public List<String> getJVMOptimizationSuggestions() {
        List<String> suggestions = new ArrayList<>();
        
        MemoryUsage heapUsage = memoryBean.getHeapMemoryUsage();
        long heapMaxMB = heapUsage.getMax() / 1024 / 1024;
        
        if (heapMaxMB < 4096) {
            suggestions.add("建议增加堆内存大小到至少4GB: -Xmx4g");
        }
        
        suggestions.add("使用G1垃圾收集器: -XX:+UseG1GC");
        suggestions.add("设置G1最大暂停时间: -XX:MaxGCPauseMillis=200");
        suggestions.add("启用大页面: -XX:+UseLargePages");
        suggestions.add("优化新生代大小: -XX:NewRatio=2");
        suggestions.add("启用压缩指针: -XX:+UseCompressedOops");
        suggestions.add("设置元空间大小: -XX:MetaspaceSize=256m -XX:MaxMetaspaceSize=512m");
        
        return suggestions;
    }
}

/**
 * 内存统计信息
 */
class MemoryStats {
    private long heapUsed;
    private long heapMax;
    private long heapCommitted;
    private long nonHeapUsed;
    private long nonHeapMax;
    private long nonHeapCommitted;
    
    // Getters and setters
    public long getHeapUsed() { return heapUsed; }
    public void setHeapUsed(long heapUsed) { this.heapUsed = heapUsed; }
    
    public long getHeapMax() { return heapMax; }
    public void setHeapMax(long heapMax) { this.heapMax = heapMax; }
    
    public long getHeapCommitted() { return heapCommitted; }
    public void setHeapCommitted(long heapCommitted) { this.heapCommitted = heapCommitted; }
    
    public long getNonHeapUsed() { return nonHeapUsed; }
    public void setNonHeapUsed(long nonHeapUsed) { this.nonHeapUsed = nonHeapUsed; }
    
    public long getNonHeapMax() { return nonHeapMax; }
    public void setNonHeapMax(long nonHeapMax) { this.nonHeapMax = nonHeapMax; }
    
    public long getNonHeapCommitted() { return nonHeapCommitted; }
    public void setNonHeapCommitted(long nonHeapCommitted) { this.nonHeapCommitted = nonHeapCommitted; }
    
    public double getHeapUsageRatio() {
        return heapMax > 0 ? (double) heapUsed / heapMax : 0.0;
    }
    
    public double getNonHeapUsageRatio() {
         return nonHeapMax > 0 ? (double) nonHeapUsed / nonHeapMax : 0.0;
     }
 }

10.5.2 查询优化

// QueryOptimizer.java - 查询优化器
package com.example.kylin.optimization;

import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicLong;

/**
 * Kylin查询优化器
 */
public class QueryOptimizer {
    
    private Map<String, QueryStats> queryStatsMap = new ConcurrentHashMap<>();
    private QueryPlanCache planCache = new QueryPlanCache();
    private QueryRewriter queryRewriter = new QueryRewriter();
    private CubeSelector cubeSelector = new CubeSelector();
    
    /**
     * 优化查询
     */
    public OptimizedQuery optimizeQuery(String sql, QueryContext context) {
        try {
            // 1. 查询重写
            String rewrittenSql = queryRewriter.rewrite(sql, context);
            
            // 2. 选择最优Cube
            List<CubeInstance> candidateCubes = cubeSelector.selectCandidates(rewrittenSql, context);
            CubeInstance bestCube = cubeSelector.selectBest(candidateCubes, context);
            
            // 3. 生成执行计划
            QueryPlan plan = generateExecutionPlan(rewrittenSql, bestCube, context);
            
            // 4. 缓存执行计划
            String planKey = generatePlanKey(rewrittenSql, bestCube.getName());
            planCache.put(planKey, plan);
            
            // 5. 记录查询统计
            recordQueryStats(sql, plan);
            
            return new OptimizedQuery(rewrittenSql, plan, bestCube);
            
        } catch (Exception e) {
            throw new RuntimeException("Failed to optimize query: " + sql, e);
        }
    }
    
    /**
     * 查询重写器
     */
    private static class QueryRewriter {
        
        public String rewrite(String sql, QueryContext context) {
            String rewritten = sql;
            
            // 1. 谓词下推
            rewritten = pushDownPredicates(rewritten);
            
            // 2. 投影下推
            rewritten = pushDownProjections(rewritten);
            
            // 3. 聚合优化
            rewritten = optimizeAggregations(rewritten);
            
            // 4. 子查询优化
            rewritten = optimizeSubqueries(rewritten);
            
            // 5. JOIN优化
            rewritten = optimizeJoins(rewritten);
            
            return rewritten;
        }
        
        private String pushDownPredicates(String sql) {
            // 实现谓词下推逻辑
            // 将WHERE条件尽可能推到数据源层
            return sql;
        }
        
        private String pushDownProjections(String sql) {
            // 实现投影下推逻辑
            // 只选择需要的列
            return sql;
        }
        
        private String optimizeAggregations(String sql) {
            // 优化聚合函数
            // 使用预计算的聚合结果
            return sql;
        }
        
        private String optimizeSubqueries(String sql) {
            // 子查询优化
            // 将相关子查询转换为JOIN
            return sql;
        }
        
        private String optimizeJoins(String sql) {
            // JOIN优化
            // 选择最优的JOIN顺序和算法
            return sql;
        }
    }
    
    /**
     * Cube选择器
     */
    private static class CubeSelector {
        
        public List<CubeInstance> selectCandidates(String sql, QueryContext context) {
            List<CubeInstance> candidates = new ArrayList<>();
            
            // 解析SQL获取所需的维度和度量
            Set<String> requiredDimensions = extractDimensions(sql);
            Set<String> requiredMeasures = extractMeasures(sql);
            
            // 查找包含所需维度和度量的Cube
            for (CubeInstance cube : context.getAvailableCubes()) {
                if (cubeContainsRequiredFields(cube, requiredDimensions, requiredMeasures)) {
                    candidates.add(cube);
                }
            }
            
            return candidates;
        }
        
        public CubeInstance selectBest(List<CubeInstance> candidates, QueryContext context) {
            if (candidates.isEmpty()) {
                throw new RuntimeException("No suitable cube found for the query");
            }
            
            // 评分标准:数据新鲜度、查询覆盖度、存储大小
            CubeInstance bestCube = null;
            double bestScore = -1;
            
            for (CubeInstance cube : candidates) {
                double score = calculateCubeScore(cube, context);
                if (score > bestScore) {
                    bestScore = score;
                    bestCube = cube;
                }
            }
            
            return bestCube;
        }
        
        private Set<String> extractDimensions(String sql) {
            // 从SQL中提取维度字段
            Set<String> dimensions = new HashSet<>();
            // 实现SQL解析逻辑
            return dimensions;
        }
        
        private Set<String> extractMeasures(String sql) {
            // 从SQL中提取度量字段
            Set<String> measures = new HashSet<>();
            // 实现SQL解析逻辑
            return measures;
        }
        
        private boolean cubeContainsRequiredFields(CubeInstance cube, Set<String> dimensions, Set<String> measures) {
            // 检查Cube是否包含所需的维度和度量
            return true; // 简化实现
        }
        
        private double calculateCubeScore(CubeInstance cube, QueryContext context) {
            double score = 0.0;
            
            // 数据新鲜度权重 (40%)
            long dataAge = System.currentTimeMillis() - cube.getLastBuildTime();
            double freshnessScore = Math.max(0, 1.0 - (dataAge / (24 * 60 * 60 * 1000.0))); // 1天内为满分
            score += freshnessScore * 0.4;
            
            // 查询覆盖度权重 (35%)
            double coverageScore = calculateQueryCoverage(cube, context);
            score += coverageScore * 0.35;
            
            // 存储效率权重 (25%)
            double efficiencyScore = calculateStorageEfficiency(cube);
            score += efficiencyScore * 0.25;
            
            return score;
        }
        
        private double calculateQueryCoverage(CubeInstance cube, QueryContext context) {
            // 计算查询覆盖度
            return 0.8; // 简化实现
        }
        
        private double calculateStorageEfficiency(CubeInstance cube) {
            // 计算存储效率
            return 0.7; // 简化实现
        }
    }
    
    /**
     * 生成执行计划
     */
    private QueryPlan generateExecutionPlan(String sql, CubeInstance cube, QueryContext context) {
        QueryPlan plan = new QueryPlan();
        plan.setSql(sql);
        plan.setCube(cube);
        plan.setEstimatedCost(estimateQueryCost(sql, cube));
        plan.setEstimatedRows(estimateResultRows(sql, cube));
        plan.setExecutionSteps(generateExecutionSteps(sql, cube));
        
        return plan;
    }
    
    private double estimateQueryCost(String sql, CubeInstance cube) {
        // 估算查询成本
        return 100.0; // 简化实现
    }
    
    private long estimateResultRows(String sql, CubeInstance cube) {
        // 估算结果行数
        return 1000L; // 简化实现
    }
    
    private List<ExecutionStep> generateExecutionSteps(String sql, CubeInstance cube) {
        // 生成执行步骤
        List<ExecutionStep> steps = new ArrayList<>();
        steps.add(new ExecutionStep("SCAN", "Scan cube segments"));
        steps.add(new ExecutionStep("FILTER", "Apply filters"));
        steps.add(new ExecutionStep("AGGREGATE", "Perform aggregation"));
        steps.add(new ExecutionStep("SORT", "Sort results"));
        
        return steps;
    }
    
    private String generatePlanKey(String sql, String cubeName) {
        return DigestUtils.md5Hex(sql + cubeName);
    }
    
    private void recordQueryStats(String sql, QueryPlan plan) {
        String queryKey = DigestUtils.md5Hex(sql);
        QueryStats stats = queryStatsMap.computeIfAbsent(queryKey, k -> new QueryStats());
        stats.incrementExecutionCount();
        stats.addExecutionTime(plan.getEstimatedCost());
    }
    
    /**
     * 获取查询统计信息
     */
    public Map<String, QueryStats> getQueryStats() {
        return new HashMap<>(queryStatsMap);
    }
    
    /**
     * 清理查询统计
     */
    public void clearQueryStats() {
        queryStatsMap.clear();
    }
}

/**
 * 优化后的查询
 */
class OptimizedQuery {
    private String sql;
    private QueryPlan plan;
    private CubeInstance cube;
    
    public OptimizedQuery(String sql, QueryPlan plan, CubeInstance cube) {
        this.sql = sql;
        this.plan = plan;
        this.cube = cube;
    }
    
    // Getters
    public String getSql() { return sql; }
    public QueryPlan getPlan() { return plan; }
    public CubeInstance getCube() { return cube; }
}

/**
 * 查询计划
 */
class QueryPlan {
    private String sql;
    private CubeInstance cube;
    private double estimatedCost;
    private long estimatedRows;
    private List<ExecutionStep> executionSteps;
    
    // Getters and setters
    public String getSql() { return sql; }
    public void setSql(String sql) { this.sql = sql; }
    
    public CubeInstance getCube() { return cube; }
    public void setCube(CubeInstance cube) { this.cube = cube; }
    
    public double getEstimatedCost() { return estimatedCost; }
    public void setEstimatedCost(double estimatedCost) { this.estimatedCost = estimatedCost; }
    
    public long getEstimatedRows() { return estimatedRows; }
    public void setEstimatedRows(long estimatedRows) { this.estimatedRows = estimatedRows; }
    
    public List<ExecutionStep> getExecutionSteps() { return executionSteps; }
    public void setExecutionSteps(List<ExecutionStep> executionSteps) { this.executionSteps = executionSteps; }
}

/**
 * 执行步骤
 */
class ExecutionStep {
    private String operation;
    private String description;
    
    public ExecutionStep(String operation, String description) {
        this.operation = operation;
        this.description = description;
    }
    
    public String getOperation() { return operation; }
    public String getDescription() { return description; }
}

/**
 * 查询统计信息
 */
class QueryStats {
    private AtomicLong executionCount = new AtomicLong(0);
    private AtomicLong totalExecutionTime = new AtomicLong(0);
    private long firstExecutionTime = System.currentTimeMillis();
    private long lastExecutionTime = System.currentTimeMillis();
    
    public void incrementExecutionCount() {
        executionCount.incrementAndGet();
        lastExecutionTime = System.currentTimeMillis();
    }
    
    public void addExecutionTime(double time) {
        totalExecutionTime.addAndGet((long) time);
    }
    
    public long getExecutionCount() { return executionCount.get(); }
    public long getTotalExecutionTime() { return totalExecutionTime.get(); }
    public double getAverageExecutionTime() {
        long count = executionCount.get();
        return count > 0 ? (double) totalExecutionTime.get() / count : 0.0;
    }
    
    public long getFirstExecutionTime() { return firstExecutionTime; }
    public long getLastExecutionTime() { return lastExecutionTime; }
}

/**
 * 查询计划缓存
 */
class QueryPlanCache {
    private Map<String, QueryPlan> cache = new ConcurrentHashMap<>();
    private static final int MAX_CACHE_SIZE = 1000;
    
    public void put(String key, QueryPlan plan) {
        if (cache.size() >= MAX_CACHE_SIZE) {
            // 简单的LRU清理策略
            cache.clear();
        }
        cache.put(key, plan);
    }
    
    public QueryPlan get(String key) {
        return cache.get(key);
    }
    
    public void clear() {
        cache.clear();
    }
    
    public int size() {
        return cache.size();
    }
}

/**
 * 查询上下文
 */
class QueryContext {
    private List<CubeInstance> availableCubes;
    private Map<String, Object> parameters;
    private String user;
    private long timestamp;
    
    public QueryContext() {
        this.timestamp = System.currentTimeMillis();
        this.parameters = new HashMap<>();
    }
    
    // Getters and setters
    public List<CubeInstance> getAvailableCubes() { return availableCubes; }
    public void setAvailableCubes(List<CubeInstance> availableCubes) { this.availableCubes = availableCubes; }
    
    public Map<String, Object> getParameters() { return parameters; }
    public void setParameters(Map<String, Object> parameters) { this.parameters = parameters; }
    
    public String getUser() { return user; }
    public void setUser(String user) { this.user = user; }
    
    public long getTimestamp() { return timestamp; }
}

10.5.3 并发控制

// ConcurrencyController.java - 并发控制器
package com.example.kylin.optimization;

import java.util.concurrent.*;
import java.util.concurrent.atomic.AtomicInteger;

/**
 * Kylin并发控制器
 */
public class ConcurrencyController {
    
    private static final int DEFAULT_MAX_CONCURRENT_QUERIES = 10;
    private static final int DEFAULT_MAX_CONCURRENT_BUILDS = 3;
    private static final long DEFAULT_QUERY_TIMEOUT = 300000; // 5分钟
    
    private Semaphore queryPermits;
    private Semaphore buildPermits;
    private ExecutorService queryExecutor;
    private ExecutorService buildExecutor;
    private Map<String, Future<?>> runningQueries;
    private Map<String, Future<?>> runningBuilds;
    private AtomicInteger queryCounter = new AtomicInteger(0);
    private AtomicInteger buildCounter = new AtomicInteger(0);
    
    public ConcurrencyController() {
        this(DEFAULT_MAX_CONCURRENT_QUERIES, DEFAULT_MAX_CONCURRENT_BUILDS);
    }
    
    public ConcurrencyController(int maxConcurrentQueries, int maxConcurrentBuilds) {
        this.queryPermits = new Semaphore(maxConcurrentQueries);
        this.buildPermits = new Semaphore(maxConcurrentBuilds);
        
        this.queryExecutor = Executors.newFixedThreadPool(maxConcurrentQueries, 
            new ThreadFactory() {
                @Override
                public Thread newThread(Runnable r) {
                    Thread t = new Thread(r, "kylin-query-" + queryCounter.incrementAndGet());
                    t.setDaemon(true);
                    return t;
                }
            });
            
        this.buildExecutor = Executors.newFixedThreadPool(maxConcurrentBuilds,
            new ThreadFactory() {
                @Override
                public Thread newThread(Runnable r) {
                    Thread t = new Thread(r, "kylin-build-" + buildCounter.incrementAndGet());
                    t.setDaemon(true);
                    return t;
                }
            });
            
        this.runningQueries = new ConcurrentHashMap<>();
        this.runningBuilds = new ConcurrentHashMap<>();
    }
    
    /**
     * 提交查询任务
     */
    public CompletableFuture<QueryResult> submitQuery(String queryId, Callable<QueryResult> queryTask) {
        return CompletableFuture.supplyAsync(() -> {
            try {
                // 获取查询许可
                if (!queryPermits.tryAcquire(DEFAULT_QUERY_TIMEOUT, TimeUnit.MILLISECONDS)) {
                    throw new RuntimeException("Query queue is full, please try again later");
                }
                
                try {
                    // 执行查询
                    Future<QueryResult> future = queryExecutor.submit(queryTask);
                    runningQueries.put(queryId, future);
                    
                    QueryResult result = future.get(DEFAULT_QUERY_TIMEOUT, TimeUnit.MILLISECONDS);
                    return result;
                    
                } catch (TimeoutException e) {
                    // 查询超时,取消任务
                    cancelQuery(queryId);
                    throw new RuntimeException("Query timeout after " + DEFAULT_QUERY_TIMEOUT + "ms", e);
                } finally {
                    runningQueries.remove(queryId);
                    queryPermits.release();
                }
                
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
                throw new RuntimeException("Query was interrupted", e);
            } catch (ExecutionException e) {
                throw new RuntimeException("Query execution failed", e.getCause());
            }
        });
    }
    
    /**
     * 提交构建任务
     */
    public CompletableFuture<BuildResult> submitBuild(String buildId, Callable<BuildResult> buildTask) {
        return CompletableFuture.supplyAsync(() -> {
            try {
                // 获取构建许可
                buildPermits.acquire();
                
                try {
                    // 执行构建
                    Future<BuildResult> future = buildExecutor.submit(buildTask);
                    runningBuilds.put(buildId, future);
                    
                    BuildResult result = future.get(); // 构建任务不设置超时
                    return result;
                    
                } finally {
                    runningBuilds.remove(buildId);
                    buildPermits.release();
                }
                
            } catch (InterruptedException e) {
                Thread.currentThread().interrupt();
                throw new RuntimeException("Build was interrupted", e);
            } catch (ExecutionException e) {
                throw new RuntimeException("Build execution failed", e.getCause());
            }
        });
    }
    
    /**
     * 取消查询
     */
    public boolean cancelQuery(String queryId) {
        Future<?> future = runningQueries.get(queryId);
        if (future != null) {
            boolean cancelled = future.cancel(true);
            runningQueries.remove(queryId);
            return cancelled;
        }
        return false;
    }
    
    /**
     * 取消构建
     */
    public boolean cancelBuild(String buildId) {
        Future<?> future = runningBuilds.get(buildId);
        if (future != null) {
            boolean cancelled = future.cancel(true);
            runningBuilds.remove(buildId);
            return cancelled;
        }
        return false;
    }
    
    /**
     * 获取并发状态
     */
    public ConcurrencyStatus getStatus() {
        ConcurrencyStatus status = new ConcurrencyStatus();
        status.setAvailableQueryPermits(queryPermits.availablePermits());
        status.setAvailableBuildPermits(buildPermits.availablePermits());
        status.setRunningQueriesCount(runningQueries.size());
        status.setRunningBuildsCount(runningBuilds.size());
        status.setQueuedTasksCount(((ThreadPoolExecutor) queryExecutor).getQueue().size() + 
                                  ((ThreadPoolExecutor) buildExecutor).getQueue().size());
        
        return status;
    }
    
    /**
     * 获取运行中的查询列表
     */
    public Set<String> getRunningQueries() {
        return new HashSet<>(runningQueries.keySet());
    }
    
    /**
     * 获取运行中的构建列表
     */
    public Set<String> getRunningBuilds() {
        return new HashSet<>(runningBuilds.keySet());
    }
    
    /**
     * 关闭并发控制器
     */
    public void shutdown() {
        queryExecutor.shutdown();
        buildExecutor.shutdown();
        
        try {
            if (!queryExecutor.awaitTermination(60, TimeUnit.SECONDS)) {
                queryExecutor.shutdownNow();
            }
            if (!buildExecutor.awaitTermination(60, TimeUnit.SECONDS)) {
                buildExecutor.shutdownNow();
            }
        } catch (InterruptedException e) {
            queryExecutor.shutdownNow();
            buildExecutor.shutdownNow();
            Thread.currentThread().interrupt();
        }
    }
}

/**
 * 并发状态
 */
class ConcurrencyStatus {
    private int availableQueryPermits;
    private int availableBuildPermits;
    private int runningQueriesCount;
    private int runningBuildsCount;
    private int queuedTasksCount;
    
    // Getters and setters
    public int getAvailableQueryPermits() { return availableQueryPermits; }
    public void setAvailableQueryPermits(int availableQueryPermits) { this.availableQueryPermits = availableQueryPermits; }
    
    public int getAvailableBuildPermits() { return availableBuildPermits; }
    public void setAvailableBuildPermits(int availableBuildPermits) { this.availableBuildPermits = availableBuildPermits; }
    
    public int getRunningQueriesCount() { return runningQueriesCount; }
    public void setRunningQueriesCount(int runningQueriesCount) { this.runningQueriesCount = runningQueriesCount; }
    
    public int getRunningBuildsCount() { return runningBuildsCount; }
    public void setRunningBuildsCount(int runningBuildsCount) { this.runningBuildsCount = runningBuildsCount; }
    
    public int getQueuedTasksCount() { return queuedTasksCount; }
    public void setQueuedTasksCount(int queuedTasksCount) { this.queuedTasksCount = queuedTasksCount; }
    
    @Override
    public String toString() {
        return String.format("ConcurrencyStatus{queryPermits=%d, buildPermits=%d, runningQueries=%d, runningBuilds=%d, queuedTasks=%d}",
            availableQueryPermits, availableBuildPermits, runningQueriesCount, runningBuildsCount, queuedTasksCount);
    }
}

/**
 * 查询结果
 */
class QueryResult {
    private List<List<Object>> rows;
    private List<String> columnNames;
    private long executionTime;
    private String queryId;
    
    public QueryResult(String queryId) {
        this.queryId = queryId;
        this.rows = new ArrayList<>();
        this.columnNames = new ArrayList<>();
    }
    
    // Getters and setters
    public List<List<Object>> getRows() { return rows; }
    public void setRows(List<List<Object>> rows) { this.rows = rows; }
    
    public List<String> getColumnNames() { return columnNames; }
    public void setColumnNames(List<String> columnNames) { this.columnNames = columnNames; }
    
    public long getExecutionTime() { return executionTime; }
    public void setExecutionTime(long executionTime) { this.executionTime = executionTime; }
    
    public String getQueryId() { return queryId; }
}

/**
 * 构建结果
 */
class BuildResult {
    private String buildId;
    private String status;
    private long buildTime;
    private String errorMessage;
    
    public BuildResult(String buildId) {
        this.buildId = buildId;
    }
    
    // Getters and setters
    public String getBuildId() { return buildId; }
    
    public String getStatus() { return status; }
    public void setStatus(String status) { this.status = status; }
    
    public long getBuildTime() { return buildTime; }
    public void setBuildTime(long buildTime) { this.buildTime = buildTime; }
    
    public String getErrorMessage() { return errorMessage; }
     public void setErrorMessage(String errorMessage) { this.errorMessage = errorMessage; }
 }

10.6 监控与告警

10.6.1 系统监控

# kylin_monitor.py - Kylin系统监控
import time
import json
import requests
import psutil
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Any
from dataclasses import dataclass
from concurrent.futures import ThreadPoolExecutor

@dataclass
class MetricData:
    """指标数据类"""
    name: str
    value: float
    timestamp: datetime
    tags: Dict[str, str] = None
    
    def to_dict(self) -> Dict[str, Any]:
        return {
            'name': self.name,
            'value': self.value,
            'timestamp': self.timestamp.isoformat(),
            'tags': self.tags or {}
        }

class KylinMonitor:
    """Kylin监控系统"""
    
    def __init__(self, kylin_host: str, kylin_port: int = 7070, 
                 username: str = 'ADMIN', password: str = 'KYLIN'):
        self.kylin_host = kylin_host
        self.kylin_port = kylin_port
        self.username = username
        self.password = password
        self.base_url = f"http://{kylin_host}:{kylin_port}/kylin/api"
        self.session = requests.Session()
        self.session.auth = (username, password)
        
        # 配置日志
        logging.basicConfig(level=logging.INFO)
        self.logger = logging.getLogger(__name__)
        
        # 监控配置
        self.monitoring_interval = 60  # 60秒
        self.alert_thresholds = {
            'cpu_usage': 80.0,
            'memory_usage': 85.0,
            'disk_usage': 90.0,
            'query_response_time': 30000,  # 30秒
            'build_failure_rate': 0.1,  # 10%
            'concurrent_queries': 50
        }
        
        self.metrics_history = []
        self.alerts = []
        
    def start_monitoring(self):
        """启动监控"""
        self.logger.info("Starting Kylin monitoring...")
        
        with ThreadPoolExecutor(max_workers=4) as executor:
            while True:
                try:
                    # 并行收集各类指标
                    futures = [
                        executor.submit(self.collect_system_metrics),
                        executor.submit(self.collect_kylin_metrics),
                        executor.submit(self.collect_query_metrics),
                        executor.submit(self.collect_build_metrics)
                    ]
                    
                    # 等待所有指标收集完成
                    for future in futures:
                        metrics = future.result()
                        self.metrics_history.extend(metrics)
                    
                    # 检查告警
                    self.check_alerts()
                    
                    # 清理历史数据(保留最近24小时)
                    self.cleanup_old_metrics()
                    
                    # 等待下一个监控周期
                    time.sleep(self.monitoring_interval)
                    
                except Exception as e:
                    self.logger.error(f"Monitoring error: {e}")
                    time.sleep(self.monitoring_interval)
    
    def collect_system_metrics(self) -> List[MetricData]:
        """收集系统指标"""
        metrics = []
        now = datetime.now()
        
        try:
            # CPU使用率
            cpu_percent = psutil.cpu_percent(interval=1)
            metrics.append(MetricData('system.cpu.usage', cpu_percent, now, {'unit': 'percent'}))
            
            # 内存使用率
            memory = psutil.virtual_memory()
            memory_percent = memory.percent
            metrics.append(MetricData('system.memory.usage', memory_percent, now, {'unit': 'percent'}))
            metrics.append(MetricData('system.memory.available', memory.available / 1024 / 1024 / 1024, now, {'unit': 'GB'}))
            
            # 磁盘使用率
            disk = psutil.disk_usage('/')
            disk_percent = (disk.used / disk.total) * 100
            metrics.append(MetricData('system.disk.usage', disk_percent, now, {'unit': 'percent'}))
            metrics.append(MetricData('system.disk.free', disk.free / 1024 / 1024 / 1024, now, {'unit': 'GB'}))
            
            # 网络IO
            net_io = psutil.net_io_counters()
            metrics.append(MetricData('system.network.bytes_sent', net_io.bytes_sent, now, {'unit': 'bytes'}))
            metrics.append(MetricData('system.network.bytes_recv', net_io.bytes_recv, now, {'unit': 'bytes'}))
            
        except Exception as e:
            self.logger.error(f"Failed to collect system metrics: {e}")
        
        return metrics
    
    def collect_kylin_metrics(self) -> List[MetricData]:
        """收集Kylin服务指标"""
        metrics = []
        now = datetime.now()
        
        try:
            # 检查Kylin服务状态
            response = self.session.get(f"{self.base_url}/admin/config")
            if response.status_code == 200:
                metrics.append(MetricData('kylin.service.status', 1, now, {'status': 'up'}))
            else:
                metrics.append(MetricData('kylin.service.status', 0, now, {'status': 'down'}))
            
            # 获取项目数量
            projects_response = self.session.get(f"{self.base_url}/projects")
            if projects_response.status_code == 200:
                projects = projects_response.json()
                metrics.append(MetricData('kylin.projects.count', len(projects), now))
            
            # 获取Cube数量和状态
            cubes_response = self.session.get(f"{self.base_url}/cubes")
            if cubes_response.status_code == 200:
                cubes = cubes_response.json()
                total_cubes = len(cubes)
                ready_cubes = sum(1 for cube in cubes if cube.get('status') == 'READY')
                building_cubes = sum(1 for cube in cubes if cube.get('status') == 'BUILDING')
                
                metrics.append(MetricData('kylin.cubes.total', total_cubes, now))
                metrics.append(MetricData('kylin.cubes.ready', ready_cubes, now))
                metrics.append(MetricData('kylin.cubes.building', building_cubes, now))
            
        except Exception as e:
            self.logger.error(f"Failed to collect Kylin metrics: {e}")
        
        return metrics
    
    def collect_query_metrics(self) -> List[MetricData]:
        """收集查询指标"""
        metrics = []
        now = datetime.now()
        
        try:
            # 获取查询历史(最近1小时)
            end_time = int(now.timestamp() * 1000)
            start_time = int((now - timedelta(hours=1)).timestamp() * 1000)
            
            query_url = f"{self.base_url}/query/history"
            params = {
                'startTime': start_time,
                'endTime': end_time,
                'pageSize': 1000
            }
            
            response = self.session.get(query_url, params=params)
            if response.status_code == 200:
                queries = response.json().get('data', [])
                
                if queries:
                    # 查询数量
                    metrics.append(MetricData('kylin.queries.count', len(queries), now))
                    
                    # 平均响应时间
                    response_times = [q.get('duration', 0) for q in queries if q.get('duration')]
                    if response_times:
                        avg_response_time = sum(response_times) / len(response_times)
                        max_response_time = max(response_times)
                        metrics.append(MetricData('kylin.queries.avg_response_time', avg_response_time, now, {'unit': 'ms'}))
                        metrics.append(MetricData('kylin.queries.max_response_time', max_response_time, now, {'unit': 'ms'}))
                    
                    # 成功率
                    successful_queries = sum(1 for q in queries if q.get('isSuccess', False))
                    success_rate = successful_queries / len(queries) if queries else 0
                    metrics.append(MetricData('kylin.queries.success_rate', success_rate, now, {'unit': 'ratio'}))
                    
                    # 并发查询数(当前运行中的查询)
                    running_queries = sum(1 for q in queries if q.get('queryStatus') == 'RUNNING')
                    metrics.append(MetricData('kylin.queries.concurrent', running_queries, now))
            
        except Exception as e:
            self.logger.error(f"Failed to collect query metrics: {e}")
        
        return metrics
    
    def collect_build_metrics(self) -> List[MetricData]:
        """收集构建指标"""
        metrics = []
        now = datetime.now()
        
        try:
            # 获取构建作业历史
            jobs_response = self.session.get(f"{self.base_url}/jobs")
            if jobs_response.status_code == 200:
                jobs = jobs_response.json()
                
                # 最近24小时的作业
                recent_jobs = [
                    job for job in jobs 
                    if job.get('last_modified') and 
                    datetime.fromtimestamp(job['last_modified'] / 1000) > now - timedelta(hours=24)
                ]
                
                if recent_jobs:
                    # 构建作业数量
                    metrics.append(MetricData('kylin.builds.count', len(recent_jobs), now))
                    
                    # 构建成功率
                    successful_builds = sum(1 for job in recent_jobs if job.get('job_status') == 'FINISHED')
                    failed_builds = sum(1 for job in recent_jobs if job.get('job_status') == 'ERROR')
                    
                    if recent_jobs:
                        success_rate = successful_builds / len(recent_jobs)
                        failure_rate = failed_builds / len(recent_jobs)
                        metrics.append(MetricData('kylin.builds.success_rate', success_rate, now, {'unit': 'ratio'}))
                        metrics.append(MetricData('kylin.builds.failure_rate', failure_rate, now, {'unit': 'ratio'}))
                    
                    # 平均构建时间
                    build_times = [
                        job.get('duration', 0) for job in recent_jobs 
                        if job.get('duration') and job.get('job_status') == 'FINISHED'
                    ]
                    if build_times:
                        avg_build_time = sum(build_times) / len(build_times)
                        metrics.append(MetricData('kylin.builds.avg_duration', avg_build_time, now, {'unit': 'ms'}))
                    
                    # 当前运行中的构建
                    running_builds = sum(1 for job in jobs if job.get('job_status') == 'RUNNING')
                    metrics.append(MetricData('kylin.builds.running', running_builds, now))
            
        except Exception as e:
            self.logger.error(f"Failed to collect build metrics: {e}")
        
        return metrics
    
    def check_alerts(self):
        """检查告警条件"""
        if not self.metrics_history:
            return
        
        # 获取最新指标
        latest_metrics = {}
        for metric in reversed(self.metrics_history):
            if metric.name not in latest_metrics:
                latest_metrics[metric.name] = metric
        
        # 检查各种告警条件
        alerts_to_send = []
        
        # CPU使用率告警
        cpu_metric = latest_metrics.get('system.cpu.usage')
        if cpu_metric and cpu_metric.value > self.alert_thresholds['cpu_usage']:
            alerts_to_send.append({
                'type': 'HIGH_CPU_USAGE',
                'message': f'CPU usage is {cpu_metric.value:.1f}%, exceeds threshold {self.alert_thresholds["cpu_usage"]}%',
                'severity': 'WARNING',
                'timestamp': datetime.now()
            })
        
        # 内存使用率告警
        memory_metric = latest_metrics.get('system.memory.usage')
        if memory_metric and memory_metric.value > self.alert_thresholds['memory_usage']:
            alerts_to_send.append({
                'type': 'HIGH_MEMORY_USAGE',
                'message': f'Memory usage is {memory_metric.value:.1f}%, exceeds threshold {self.alert_thresholds["memory_usage"]}%',
                'severity': 'WARNING',
                'timestamp': datetime.now()
            })
        
        # 磁盘使用率告警
        disk_metric = latest_metrics.get('system.disk.usage')
        if disk_metric and disk_metric.value > self.alert_thresholds['disk_usage']:
            alerts_to_send.append({
                'type': 'HIGH_DISK_USAGE',
                'message': f'Disk usage is {disk_metric.value:.1f}%, exceeds threshold {self.alert_thresholds["disk_usage"]}%',
                'severity': 'CRITICAL',
                'timestamp': datetime.now()
            })
        
        # 查询响应时间告警
        query_time_metric = latest_metrics.get('kylin.queries.avg_response_time')
        if query_time_metric and query_time_metric.value > self.alert_thresholds['query_response_time']:
            alerts_to_send.append({
                'type': 'SLOW_QUERY_RESPONSE',
                'message': f'Average query response time is {query_time_metric.value:.0f}ms, exceeds threshold {self.alert_thresholds["query_response_time"]}ms',
                'severity': 'WARNING',
                'timestamp': datetime.now()
            })
        
        # 构建失败率告警
        build_failure_metric = latest_metrics.get('kylin.builds.failure_rate')
        if build_failure_metric and build_failure_metric.value > self.alert_thresholds['build_failure_rate']:
            alerts_to_send.append({
                'type': 'HIGH_BUILD_FAILURE_RATE',
                'message': f'Build failure rate is {build_failure_metric.value:.1%}, exceeds threshold {self.alert_thresholds["build_failure_rate"]:.1%}',
                'severity': 'CRITICAL',
                'timestamp': datetime.now()
            })
        
        # 并发查询数告警
        concurrent_queries_metric = latest_metrics.get('kylin.queries.concurrent')
        if concurrent_queries_metric and concurrent_queries_metric.value > self.alert_thresholds['concurrent_queries']:
            alerts_to_send.append({
                'type': 'HIGH_CONCURRENT_QUERIES',
                'message': f'Concurrent queries count is {concurrent_queries_metric.value}, exceeds threshold {self.alert_thresholds["concurrent_queries"]}',
                'severity': 'WARNING',
                'timestamp': datetime.now()
            })
        
        # Kylin服务状态告警
        service_status_metric = latest_metrics.get('kylin.service.status')
        if service_status_metric and service_status_metric.value == 0:
            alerts_to_send.append({
                'type': 'SERVICE_DOWN',
                'message': 'Kylin service is down',
                'severity': 'CRITICAL',
                'timestamp': datetime.now()
            })
        
        # 发送告警
        for alert in alerts_to_send:
            self.send_alert(alert)
            self.alerts.append(alert)
    
    def send_alert(self, alert: Dict[str, Any]):
        """发送告警"""
        self.logger.warning(f"ALERT [{alert['severity']}] {alert['type']}: {alert['message']}")
        
        # 这里可以集成各种告警渠道
        # 例如:邮件、短信、Slack、钉钉等
        
        # 示例:发送到Webhook
        # self.send_webhook_alert(alert)
        
        # 示例:发送邮件
        # self.send_email_alert(alert)
    
    def send_webhook_alert(self, alert: Dict[str, Any]):
        """发送Webhook告警"""
        webhook_url = "https://your-webhook-url.com/alerts"
        try:
            response = requests.post(webhook_url, json=alert, timeout=10)
            if response.status_code == 200:
                self.logger.info(f"Alert sent to webhook: {alert['type']}")
            else:
                self.logger.error(f"Failed to send alert to webhook: {response.status_code}")
        except Exception as e:
            self.logger.error(f"Error sending webhook alert: {e}")
    
    def cleanup_old_metrics(self):
        """清理旧的指标数据"""
        cutoff_time = datetime.now() - timedelta(hours=24)
        self.metrics_history = [
            metric for metric in self.metrics_history 
            if metric.timestamp > cutoff_time
        ]
        
        # 清理旧的告警
        cutoff_time_alerts = datetime.now() - timedelta(hours=48)
        self.alerts = [
            alert for alert in self.alerts 
            if alert['timestamp'] > cutoff_time_alerts
        ]
    
    def get_metrics_summary(self) -> Dict[str, Any]:
        """获取指标摘要"""
        if not self.metrics_history:
            return {}
        
        # 按指标名称分组
        metrics_by_name = {}
        for metric in self.metrics_history:
            if metric.name not in metrics_by_name:
                metrics_by_name[metric.name] = []
            metrics_by_name[metric.name].append(metric)
        
        # 计算摘要统计
        summary = {}
        for name, metrics in metrics_by_name.items():
            values = [m.value for m in metrics]
            summary[name] = {
                'current': values[-1] if values else 0,
                'average': sum(values) / len(values) if values else 0,
                'min': min(values) if values else 0,
                'max': max(values) if values else 0,
                'count': len(values)
            }
        
        return summary
    
    def get_recent_alerts(self, hours: int = 24) -> List[Dict[str, Any]]:
        """获取最近的告警"""
        cutoff_time = datetime.now() - timedelta(hours=hours)
        return [
            alert for alert in self.alerts 
            if alert['timestamp'] > cutoff_time
        ]

# 使用示例
if __name__ == "__main__":
    # 创建监控实例
    monitor = KylinMonitor(
        kylin_host="localhost",
        kylin_port=7070,
        username="ADMIN",
        password="KYLIN"
    )
    
    # 自定义告警阈值
    monitor.alert_thresholds.update({
        'cpu_usage': 75.0,
        'memory_usage': 80.0,
        'query_response_time': 20000
    })
    
    # 启动监控
    try:
        monitor.start_monitoring()
    except KeyboardInterrupt:
        print("Monitoring stopped by user")

10.6.2 告警配置

# alert_config.yaml - 告警配置文件
alert_config:
  # 全局配置
  global:
    enabled: true
    check_interval: 60  # 检查间隔(秒)
    notification_cooldown: 300  # 通知冷却时间(秒)
  
  # 阈值配置
  thresholds:
    system:
      cpu_usage:
        warning: 75.0
        critical: 90.0
      memory_usage:
        warning: 80.0
        critical: 95.0
      disk_usage:
        warning: 85.0
        critical: 95.0
      load_average:
        warning: 2.0
        critical: 4.0
    
    kylin:
      query_response_time:
        warning: 15000  # 15秒
        critical: 30000  # 30秒
      build_failure_rate:
        warning: 0.05   # 5%
        critical: 0.15  # 15%
      concurrent_queries:
        warning: 30
        critical: 50
      service_availability:
        critical: 0  # 服务不可用
  
  # 通知渠道配置
  notifications:
    email:
      enabled: true
      smtp_server: "smtp.company.com"
      smtp_port: 587
      username: "alerts@company.com"
      password: "${EMAIL_PASSWORD}"
      recipients:
        - "admin@company.com"
        - "ops@company.com"
      subject_prefix: "[Kylin Alert]"
    
    webhook:
      enabled: true
      url: "https://hooks.slack.com/services/YOUR/SLACK/WEBHOOK"
      timeout: 10
      retry_count: 3
    
    sms:
      enabled: false
      provider: "twilio"
      account_sid: "${TWILIO_SID}"
      auth_token: "${TWILIO_TOKEN}"
      from_number: "+1234567890"
      to_numbers:
        - "+1987654321"
  
  # 告警规则
  rules:
    - name: "High CPU Usage"
      condition: "system.cpu.usage > thresholds.system.cpu_usage.warning"
      severity: "warning"
      message: "CPU usage is {{ value }}%, exceeds warning threshold {{ threshold }}%"
      notifications: ["email", "webhook"]
    
    - name: "Critical CPU Usage"
      condition: "system.cpu.usage > thresholds.system.cpu_usage.critical"
      severity: "critical"
      message: "CPU usage is {{ value }}%, exceeds critical threshold {{ threshold }}%"
      notifications: ["email", "webhook", "sms"]
    
    - name: "Kylin Service Down"
      condition: "kylin.service.status == 0"
      severity: "critical"
      message: "Kylin service is not responding"
      notifications: ["email", "webhook", "sms"]
    
    - name: "Slow Query Performance"
      condition: "kylin.queries.avg_response_time > thresholds.kylin.query_response_time.warning"
      severity: "warning"
      message: "Average query response time is {{ value }}ms, exceeds threshold {{ threshold }}ms"
      notifications: ["email", "webhook"]
    
    - name: "High Build Failure Rate"
      condition: "kylin.builds.failure_rate > thresholds.kylin.build_failure_rate.critical"
      severity: "critical"
      message: "Build failure rate is {{ value | percentage }}, exceeds critical threshold {{ threshold | percentage }}"
      notifications: ["email", "webhook"]

10.7 本章小结

本章深入探讨了Apache Kylin的高级特性与扩展能力,涵盖了以下核心内容:

10.7.1 核心知识点

  1. 自定义函数开发

    • 标量UDF和聚合UDF的实现
    • UDF的部署、注册和测试
    • 函数性能优化技巧
  2. 插件机制与扩展

    • Kylin插件架构设计
    • 自定义存储插件开发
    • 自定义认证插件实现
    • 插件管理和部署
  3. 存储引擎扩展

    • 分布式存储引擎设计
    • 多数据源支持
    • 数据读写器实现
    • 存储优化策略
  4. 高级调优技巧

    • 内存优化和监控
    • 查询优化器实现
    • 并发控制机制
    • 性能调优最佳实践
  5. 监控与告警

    • 系统指标监控
    • 告警规则配置
    • 多渠道通知机制
    • 运维自动化

10.7.2 实用工具

  • UDF开发框架:提供了完整的自定义函数开发模板
  • 插件管理器:支持插件的动态加载和管理
  • 性能优化器:包含内存、查询、并发等多维度优化
  • 监控系统:全方位的系统和业务指标监控
  • 告警平台:灵活的告警规则和通知机制

10.7.3 最佳实践

  1. 扩展开发

    • 遵循Kylin插件接口规范
    • 注重代码质量和测试覆盖
    • 考虑向后兼容性
  2. 性能优化

    • 定期监控系统资源使用
    • 根据业务特点调整参数
    • 实施渐进式优化策略
  3. 运维管理

    • 建立完善的监控体系
    • 制定合理的告警策略
    • 定期进行性能评估

10.7.4 下一章预告

下一章我们将学习”Kylin运维与故障排除”,包括: - 日常运维操作 - 故障诊断方法 - 性能问题排查 - 数据一致性检查 - 备份恢复策略

10.7.5 练习与思考

理论练习: 1. 设计一个自定义的地理位置距离计算UDF 2. 分析不同存储引擎的适用场景 3. 制定一套完整的Kylin监控指标体系

实践练习: 1. 开发并部署一个自定义聚合函数 2. 实现一个简单的缓存存储插件 3. 搭建Kylin监控告警系统

思考题: 1. 如何设计一个支持多租户的Kylin扩展? 2. 在什么情况下需要开发自定义存储引擎? 3. 如何平衡监控的全面性和系统性能开销?

通过本章的学习,您应该能够深入理解Kylin的扩展机制,具备开发高级功能的能力,并能够建立完善的监控运维体系。