概述

TiDB作为一个现代化的分布式数据库,拥有丰富的生态系统和配套工具。本章将详细介绍TiDB生态系统中的各种工具和组件,包括数据迁移工具、监控工具、开发工具、运维工具等,帮助您更好地使用和管理TiDB集群。

学习目标

通过本章学习,您将能够:

  1. 了解TiDB生态系统的整体架构
  2. 掌握各种数据迁移工具的使用
  3. 学会配置和使用监控工具
  4. 熟悉开发和运维工具
  5. 理解TiDB与其他系统的集成方案
  6. 掌握生态工具的最佳实践

TiDB生态系统概览

1. 生态系统架构

from enum import Enum
from dataclasses import dataclass
from typing import List, Dict, Optional
import json

class ToolCategory(Enum):
    """工具分类"""
    MIGRATION = "migration"          # 数据迁移
    MONITORING = "monitoring"        # 监控工具
    DEVELOPMENT = "development"      # 开发工具
    OPERATIONS = "operations"        # 运维工具
    INTEGRATION = "integration"      # 集成工具
    BACKUP = "backup"               # 备份工具
    ANALYSIS = "analysis"           # 分析工具

class ToolType(Enum):
    """工具类型"""
    OFFICIAL = "official"           # 官方工具
    COMMUNITY = "community"         # 社区工具
    THIRD_PARTY = "third_party"     # 第三方工具

@dataclass
class EcosystemTool:
    """生态系统工具"""
    name: str
    category: ToolCategory
    tool_type: ToolType
    description: str
    features: List[str]
    use_cases: List[str]
    installation: str
    documentation_url: str

class TiDBEcosystemManager:
    """TiDB生态系统管理器"""
    
    def __init__(self):
        self.tools = self._initialize_tools()
    
    def _initialize_tools(self) -> List[EcosystemTool]:
        """初始化生态系统工具列表"""
        return [
            # 数据迁移工具
            EcosystemTool(
                name="TiDB Lightning",
                category=ToolCategory.MIGRATION,
                tool_type=ToolType.OFFICIAL,
                description="高性能数据导入工具",
                features=[
                    "支持TB级数据快速导入",
                    "并行导入提高效率",
                    "支持多种数据格式",
                    "断点续传功能"
                ],
                use_cases=[
                    "大批量数据迁移",
                    "数据仓库构建",
                    "历史数据导入"
                ],
                installation="tiup install tidb-lightning",
                documentation_url="https://docs.pingcap.com/tidb/stable/tidb-lightning-overview"
            ),
            EcosystemTool(
                name="TiDB Data Migration (DM)",
                category=ToolCategory.MIGRATION,
                tool_type=ToolType.OFFICIAL,
                description="MySQL到TiDB的实时数据同步工具",
                features=[
                    "实时数据同步",
                    "支持分库分表合并",
                    "数据过滤和转换",
                    "高可用架构"
                ],
                use_cases=[
                    "MySQL迁移到TiDB",
                    "数据库整合",
                    "实时数据同步"
                ],
                installation="tiup install dm",
                documentation_url="https://docs.pingcap.com/tidb-data-migration/stable"
            ),
            EcosystemTool(
                name="Dumpling",
                category=ToolCategory.MIGRATION,
                tool_type=ToolType.OFFICIAL,
                description="数据导出工具",
                features=[
                    "并行导出",
                    "支持多种格式",
                    "数据压缩",
                    "增量导出"
                ],
                use_cases=[
                    "数据备份",
                    "数据迁移",
                    "数据分析"
                ],
                installation="tiup install dumpling",
                documentation_url="https://docs.pingcap.com/tidb/stable/dumpling-overview"
            ),
            
            # 监控工具
            EcosystemTool(
                name="TiDB Dashboard",
                category=ToolCategory.MONITORING,
                tool_type=ToolType.OFFICIAL,
                description="TiDB集群可视化管理平台",
                features=[
                    "集群状态监控",
                    "SQL性能分析",
                    "慢查询分析",
                    "集群拓扑管理"
                ],
                use_cases=[
                    "集群监控",
                    "性能调优",
                    "故障诊断"
                ],
                installation="内置在PD中",
                documentation_url="https://docs.pingcap.com/tidb/stable/dashboard-intro"
            ),
            EcosystemTool(
                name="Prometheus + Grafana",
                category=ToolCategory.MONITORING,
                tool_type=ToolType.THIRD_PARTY,
                description="监控和可视化解决方案",
                features=[
                    "指标收集和存储",
                    "可视化仪表板",
                    "告警管理",
                    "历史数据分析"
                ],
                use_cases=[
                    "系统监控",
                    "性能分析",
                    "容量规划"
                ],
                installation="tiup cluster deploy",
                documentation_url="https://docs.pingcap.com/tidb/stable/tidb-monitoring-framework"
            ),
            
            # 备份工具
            EcosystemTool(
                name="Backup & Restore (BR)",
                category=ToolCategory.BACKUP,
                tool_type=ToolType.OFFICIAL,
                description="分布式备份恢复工具",
                features=[
                    "分布式备份",
                    "增量备份",
                    "快速恢复",
                    "云存储支持"
                ],
                use_cases=[
                    "数据备份",
                    "灾难恢复",
                    "数据迁移"
                ],
                installation="tiup install br",
                documentation_url="https://docs.pingcap.com/tidb/stable/backup-and-restore-overview"
            ),
            
            # 开发工具
            EcosystemTool(
                name="TiSpark",
                category=ToolCategory.DEVELOPMENT,
                tool_type=ToolType.OFFICIAL,
                description="Spark连接器,支持大数据分析",
                features=[
                    "Spark SQL支持",
                    "分布式计算",
                    "HTAP能力",
                    "数据湖集成"
                ],
                use_cases=[
                    "大数据分析",
                    "ETL处理",
                    "机器学习"
                ],
                installation="Maven/SBT依赖",
                documentation_url="https://docs.pingcap.com/tidb/stable/tispark-overview"
            ),
            EcosystemTool(
                name="TiFlash",
                category=ToolCategory.ANALYSIS,
                tool_type=ToolType.OFFICIAL,
                description="列式存储引擎,支持实时分析",
                features=[
                    "列式存储",
                    "实时同步",
                    "MPP计算",
                    "向量化执行"
                ],
                use_cases=[
                    "实时分析",
                    "OLAP查询",
                    "报表生成"
                ],
                installation="tiup cluster scale-out",
                documentation_url="https://docs.pingcap.com/tidb/stable/tiflash-overview"
            )
        ]
    
    def get_tools_by_category(self, category: ToolCategory) -> List[EcosystemTool]:
        """按分类获取工具"""
        return [tool for tool in self.tools if tool.category == category]
    
    def get_tools_by_type(self, tool_type: ToolType) -> List[EcosystemTool]:
        """按类型获取工具"""
        return [tool for tool in self.tools if tool.tool_type == tool_type]
    
    def search_tools(self, keyword: str) -> List[EcosystemTool]:
        """搜索工具"""
        keyword = keyword.lower()
        return [
            tool for tool in self.tools
            if keyword in tool.name.lower() or 
               keyword in tool.description.lower() or
               any(keyword in feature.lower() for feature in tool.features)
        ]
    
    def generate_ecosystem_overview(self) -> Dict:
        """生成生态系统概览"""
        overview = {
            "total_tools": len(self.tools),
            "categories": {},
            "types": {},
            "featured_tools": []
        }
        
        # 按分类统计
        for category in ToolCategory:
            tools = self.get_tools_by_category(category)
            overview["categories"][category.value] = {
                "count": len(tools),
                "tools": [tool.name for tool in tools]
            }
        
        # 按类型统计
        for tool_type in ToolType:
            tools = self.get_tools_by_type(tool_type)
            overview["types"][tool_type.value] = {
                "count": len(tools),
                "tools": [tool.name for tool in tools]
            }
        
        # 推荐工具
        overview["featured_tools"] = [
            {
                "name": tool.name,
                "category": tool.category.value,
                "description": tool.description
            }
            for tool in self.tools[:5]  # 前5个工具
        ]
        
        return overview
    
    def generate_tool_comparison(self, tool_names: List[str]) -> Dict:
        """生成工具对比"""
        tools = [tool for tool in self.tools if tool.name in tool_names]
        
        comparison = {
            "tools": [],
            "feature_matrix": {},
            "use_case_matrix": {}
        }
        
        for tool in tools:
            comparison["tools"].append({
                "name": tool.name,
                "category": tool.category.value,
                "type": tool.tool_type.value,
                "description": tool.description,
                "features": tool.features,
                "use_cases": tool.use_cases
            })
        
        # 特性矩阵
        all_features = set()
        for tool in tools:
            all_features.update(tool.features)
        
        for feature in all_features:
            comparison["feature_matrix"][feature] = {
                tool.name: feature in tool.features for tool in tools
            }
        
        # 用例矩阵
        all_use_cases = set()
        for tool in tools:
            all_use_cases.update(tool.use_cases)
        
        for use_case in all_use_cases:
            comparison["use_case_matrix"][use_case] = {
                tool.name: use_case in tool.use_cases for tool in tools
            }
        
        return comparison

# 使用示例
if __name__ == "__main__":
    # 创建生态系统管理器
    ecosystem = TiDBEcosystemManager()
    
    # 生成生态系统概览
    overview = ecosystem.generate_ecosystem_overview()
    print("=== TiDB生态系统概览 ===")
    print(f"总工具数: {overview['total_tools']}")
    print("\n按分类统计:")
    for category, info in overview["categories"].items():
        print(f"  {category}: {info['count']}个工具")
    
    # 搜索监控相关工具
    monitoring_tools = ecosystem.get_tools_by_category(ToolCategory.MONITORING)
    print("\n=== 监控工具 ===")
    for tool in monitoring_tools:
        print(f"- {tool.name}: {tool.description}")
    
    # 工具对比
    comparison = ecosystem.generate_tool_comparison(["TiDB Lightning", "Dumpling"])
    print("\n=== 工具对比 ===")
    print(json.dumps(comparison, indent=2, ensure_ascii=False))

2. 工具分类和选择指南

数据迁移工具选择: - 大批量数据导入: TiDB Lightning - 实时数据同步: TiDB Data Migration (DM) - 数据导出: Dumpling - 跨云迁移: BR + 对象存储

监控工具选择: - 集群管理: TiDB Dashboard - 指标监控: Prometheus + Grafana - 日志分析: ELK Stack - APM监控: Jaeger/Zipkin

开发工具选择: - 大数据分析: TiSpark - 实时分析: TiFlash - 数据建模: TiDB Workbench - 性能测试: Sysbench

数据迁移工具详解

1. TiDB Lightning

安装和配置:

# 安装TiDB Lightning
tiup install tidb-lightning

# 创建配置文件
cat > lightning.toml << EOF
[lightning]
level = "info"
file = "tidb-lightning.log"
max-error = 0

[tikv-importer]
backend = "local"
sorted-kv-dir = "/tmp/sorted-kv-dir"

[mydumper]
data-source-dir = "/data/export"
no-schema = false
filter = ['*.*', '!mysql.*', '!sys.*', '!INFORMATION_SCHEMA.*', '!PERFORMANCE_SCHEMA.*']

[tidb]
host = "127.0.0.1"
port = 4000
user = "root"
password = ""
status-port = 10080
pd-addr = "127.0.0.1:2379"

[post-restore]
checksum = true
analyze = true
EOF

# 执行导入
tiup tidb-lightning -config lightning.toml

性能优化配置:

# lightning-optimized.toml
[lightning]
level = "info"
file = "tidb-lightning.log"
max-error = 0
check-requirements = false

[tikv-importer]
backend = "local"
sorted-kv-dir = "/nvme/sorted-kv-dir"  # 使用高速存储
range-concurrency = 16
region-concurrency = 16
io-concurrency = 8
send-kv-pairs = 32768

[mydumper]
read-block-size = "64KiB"
batch-size = 107374182400  # 100GB

[tidb]
distsql-scan-concurrency = 15
build-stats-concurrency = 20
index-serial-scan-concurrency = 20
checksum-table-concurrency = 16

[post-restore]
checksum = true
analyze = true
level-1-compact = true
level-1-compact-concurrency = 8

2. TiDB Data Migration (DM)

DM集群部署:

# dm-topology.yaml
global:
  user: "tidb"
  ssh_port: 22
  deploy_dir: "/tidb-deploy"
  data_dir: "/tidb-data"

master_servers:
  - host: 10.0.1.11
    name: dm-master-1
    port: 8261
    peer_port: 8291
  - host: 10.0.1.12
    name: dm-master-2
    port: 8261
    peer_port: 8291
  - host: 10.0.1.13
    name: dm-master-3
    port: 8261
    peer_port: 8291

worker_servers:
  - host: 10.0.1.21
    name: dm-worker-1
    port: 8262
  - host: 10.0.1.22
    name: dm-worker-2
    port: 8262
  - host: 10.0.1.23
    name: dm-worker-3
    port: 8262

monitoring_servers:
  - host: 10.0.1.31
    port: 9090

grafana_servers:
  - host: 10.0.1.31
    port: 3000

alertmanager_servers:
  - host: 10.0.1.31
    port: 9093

数据同步任务配置:

# sync-task.yaml
name: "mysql-to-tidb-sync"
task-mode: "all"  # full, incremental, all
shard-mode: "optimistic"  # pessimistic, optimistic
meta-schema: "dm_meta"
remove-meta: false

target-database:
  host: "127.0.0.1"
  port: 4000
  user: "root"
  password: ""

mysql-instances:
  - source-id: "mysql-01"
    block-allow-list: "list-1"
    mydumper-config-name: "global"
    loader-config-name: "global"
    syncer-config-name: "global"
    
  - source-id: "mysql-02"
    block-allow-list: "list-2"
    mydumper-config-name: "global"
    loader-config-name: "global"
    syncer-config-name: "global"

block-allow-list:
  list-1:
    do-dbs: ["db1", "db2"]
    ignore-dbs: ["mysql", "information_schema"]
    do-tables:
      - db-name: "db1"
        tbl-name: "table1"
      - db-name: "db2"
        tbl-name: "table2"
        
  list-2:
    do-dbs: ["db3"]
    ignore-tables:
      - db-name: "db3"
        tbl-name: "temp_*"

mydumpers:
  global:
    threads: 4
    chunk-filesize: "64MB"
    extra-args: "--single-transaction --master-data=2"

loaders:
  global:
    pool-size: 16
    dir: "./dumped_data"

syncers:
  global:
    worker-count: 16
    batch: 100
    max-retry: 100
    
    # 分库分表合并配置
    route-rules:
      - schema-pattern: "db*"
        table-pattern: "table*"
        target-schema: "merged_db"
        target-table: "merged_table"
    
    # 数据过滤配置
    filter-rules:
      - schema-pattern: "db1"
        table-pattern: "user"
        events: ["truncate table", "drop table"]
        action: "Ignore"

3. Dumpling数据导出

基本导出操作:

# 导出整个数据库
tiup dumpling \
  -h 127.0.0.1 \
  -P 4000 \
  -u root \
  -p password \
  -B mydb \
  -o /data/backup/

# 导出特定表
tiup dumpling \
  -h 127.0.0.1 \
  -P 4000 \
  -u root \
  -p password \
  -B mydb \
  -T users,orders,products \
  -o /data/backup/

# 并行导出
tiup dumpling \
  -h 127.0.0.1 \
  -P 4000 \
  -u root \
  -p password \
  -B mydb \
  -o /data/backup/ \
  -t 8 \
  --filetype csv \
  --compress gzip

# 增量导出
tiup dumpling \
  -h 127.0.0.1 \
  -P 4000 \
  -u root \
  -p password \
  -B mydb \
  -o /data/backup/ \
  --where "updated_at >= '2024-01-01 00:00:00'"

高级导出配置:

#!/bin/bash
# advanced_export.sh - 高级导出脚本

set -e

# 配置参数
HOST="127.0.0.1"
PORT="4000"
USER="root"
PASSWORD="password"
DATABASE="mydb"
OUTPUT_DIR="/data/backup/$(date +%Y%m%d_%H%M%S)"
THREADS=8
COMPRESS="gzip"

# 创建输出目录
mkdir -p $OUTPUT_DIR

echo "开始导出数据库: $DATABASE"
echo "输出目录: $OUTPUT_DIR"

# 导出数据
tiup dumpling \
  -h $HOST \
  -P $PORT \
  -u $USER \
  -p $PASSWORD \
  -B $DATABASE \
  -o $OUTPUT_DIR \
  -t $THREADS \
  --filetype sql \
  --compress $COMPRESS \
  --complete-insert \
  --hex-blob \
  --escape-backslash \
  --params "foreign_key_checks=0" \
  --params "sql_mode=''"

if [ $? -eq 0 ]; then
    echo "数据导出成功"
    
    # 生成导出报告
    cat > $OUTPUT_DIR/export_report.txt << EOF
导出报告
========
导出时间: $(date)
数据库: $DATABASE
输出目录: $OUTPUT_DIR
并发线程: $THREADS
压缩格式: $COMPRESS

文件列表:
EOF
    
    ls -lh $OUTPUT_DIR >> $OUTPUT_DIR/export_report.txt
    
    # 计算总大小
    total_size=$(du -sh $OUTPUT_DIR | cut -f1)
    echo "总大小: $total_size" >> $OUTPUT_DIR/export_report.txt
    
    echo "导出报告已生成: $OUTPUT_DIR/export_report.txt"
else
    echo "数据导出失败"
    exit 1
fi

监控和可视化工具

1. TiDB Dashboard

Dashboard功能模块:

class TiDBDashboardManager:
    """TiDB Dashboard管理器"""
    
    def __init__(self, pd_address: str = "http://127.0.0.1:2379"):
        self.pd_address = pd_address
        self.dashboard_url = f"{pd_address.replace('2379', '2379')}/dashboard"
    
    def get_cluster_info(self) -> Dict:
        """获取集群信息"""
        return {
            "cluster_id": "cluster-001",
            "version": "v7.5.0",
            "nodes": {
                "tidb": 3,
                "tikv": 6,
                "pd": 3,
                "tiflash": 2
            },
            "status": "healthy",
            "uptime": "15d 8h 32m"
        }
    
    def get_performance_metrics(self) -> Dict:
        """获取性能指标"""
        return {
            "qps": {
                "current": 1250,
                "peak_24h": 2100,
                "avg_24h": 980
            },
            "latency": {
                "p99": 45.2,
                "p95": 28.5,
                "p90": 18.3,
                "avg": 12.8
            },
            "connections": {
                "current": 156,
                "max": 1000,
                "usage_rate": 15.6
            },
            "storage": {
                "used_gb": 2048,
                "total_gb": 10240,
                "usage_rate": 20.0
            }
        }
    
    def get_slow_queries(self, limit: int = 10) -> List[Dict]:
        """获取慢查询"""
        return [
            {
                "query_id": "q001",
                "sql": "SELECT * FROM users WHERE age > 30 AND city = 'Beijing'",
                "duration_ms": 2500,
                "timestamp": "2024-01-15 10:30:25",
                "database": "myapp",
                "user": "app_user",
                "rows_examined": 1000000,
                "rows_sent": 25000
            },
            {
                "query_id": "q002",
                "sql": "UPDATE orders SET status = 'completed' WHERE order_date < '2024-01-01'",
                "duration_ms": 1800,
                "timestamp": "2024-01-15 10:28:15",
                "database": "myapp",
                "user": "batch_user",
                "rows_examined": 500000,
                "rows_sent": 0
            }
        ]
    
    def analyze_query_plan(self, sql: str) -> Dict:
        """分析查询计划"""
        return {
            "sql": sql,
            "execution_plan": [
                {
                    "id": "TableReader_7",
                    "task": "root",
                    "operator_info": "data:Selection_6",
                    "count": 25000,
                    "cost": 125000
                },
                {
                    "id": "Selection_6",
                    "task": "cop[tikv]",
                    "operator_info": "gt(myapp.users.age, 30), eq(myapp.users.city, \"Beijing\")",
                    "count": 25000,
                    "cost": 100000
                },
                {
                    "id": "TableFullScan_5",
                    "task": "cop[tikv]",
                    "operator_info": "table:users, keep order:false",
                    "count": 1000000,
                    "cost": 80000
                }
            ],
            "optimization_suggestions": [
                "考虑在(age, city)列上创建复合索引",
                "当前查询使用全表扫描,性能较差",
                "建议添加LIMIT子句限制返回行数"
            ],
            "estimated_cost": 125000,
            "estimated_rows": 25000
        }
    
    def get_cluster_topology(self) -> Dict:
        """获取集群拓扑"""
        return {
            "tidb_servers": [
                {"host": "10.0.1.11", "port": 4000, "status": "Up", "version": "v7.5.0"},
                {"host": "10.0.1.12", "port": 4000, "status": "Up", "version": "v7.5.0"},
                {"host": "10.0.1.13", "port": 4000, "status": "Up", "version": "v7.5.0"}
            ],
            "tikv_servers": [
                {"host": "10.0.1.21", "port": 20160, "status": "Up", "region_count": 1250},
                {"host": "10.0.1.22", "port": 20160, "status": "Up", "region_count": 1180},
                {"host": "10.0.1.23", "port": 20160, "status": "Up", "region_count": 1320}
            ],
            "pd_servers": [
                {"host": "10.0.1.31", "port": 2379, "status": "Leader", "version": "v7.5.0"},
                {"host": "10.0.1.32", "port": 2379, "status": "Follower", "version": "v7.5.0"},
                {"host": "10.0.1.33", "port": 2379, "status": "Follower", "version": "v7.5.0"}
            ]
        }

# 使用示例
if __name__ == "__main__":
    dashboard = TiDBDashboardManager()
    
    # 获取集群信息
    cluster_info = dashboard.get_cluster_info()
    print("=== 集群信息 ===")
    print(f"集群ID: {cluster_info['cluster_id']}")
    print(f"版本: {cluster_info['version']}")
    print(f"运行时间: {cluster_info['uptime']}")
    
    # 获取性能指标
    metrics = dashboard.get_performance_metrics()
    print("\n=== 性能指标 ===")
    print(f"当前QPS: {metrics['qps']['current']}")
    print(f"P99延迟: {metrics['latency']['p99']}ms")
    print(f"连接数: {metrics['connections']['current']}/{metrics['connections']['max']}")
    
    # 分析慢查询
    slow_queries = dashboard.get_slow_queries(5)
    print("\n=== 慢查询TOP5 ===")
    for i, query in enumerate(slow_queries, 1):
        print(f"{i}. 耗时: {query['duration_ms']}ms")
        print(f"   SQL: {query['sql'][:80]}...")

2. Prometheus + Grafana监控

Prometheus配置:

# prometheus.yml
global:
  scrape_interval: 15s
  evaluation_interval: 15s

rule_files:
  - "tidb.rules.yml"
  - "tikv.rules.yml"
  - "pd.rules.yml"

alerting:
  alertmanagers:
    - static_configs:
        - targets:
          - "alertmanager:9093"

scrape_configs:
  # TiDB监控
  - job_name: 'tidb'
    static_configs:
      - targets: 
        - '10.0.1.11:10080'
        - '10.0.1.12:10080'
        - '10.0.1.13:10080'
    scrape_interval: 15s
    metrics_path: '/metrics'

  # TiKV监控
  - job_name: 'tikv'
    static_configs:
      - targets:
        - '10.0.1.21:20180'
        - '10.0.1.22:20180'
        - '10.0.1.23:20180'
        - '10.0.1.24:20180'
        - '10.0.1.25:20180'
        - '10.0.1.26:20180'
    scrape_interval: 15s
    metrics_path: '/metrics'

  # PD监控
  - job_name: 'pd'
    static_configs:
      - targets:
        - '10.0.1.31:2379'
        - '10.0.1.32:2379'
        - '10.0.1.33:2379'
    scrape_interval: 15s
    metrics_path: '/metrics'

  # TiFlash监控
  - job_name: 'tiflash'
    static_configs:
      - targets:
        - '10.0.1.41:8234'
        - '10.0.1.42:8234'
    scrape_interval: 15s
    metrics_path: '/metrics'

  # Node Exporter
  - job_name: 'node'
    static_configs:
      - targets:
        - '10.0.1.11:9100'
        - '10.0.1.12:9100'
        - '10.0.1.13:9100'
        - '10.0.1.21:9100'
        - '10.0.1.22:9100'
        - '10.0.1.23:9100'
    scrape_interval: 15s

告警规则配置:

# tidb.rules.yml
groups:
  - name: tidb.rules
    rules:
      # TiDB服务可用性
      - alert: TiDBDown
        expr: up{job="tidb"} == 0
        for: 1m
        labels:
          severity: critical
        annotations:
          summary: "TiDB instance is down"
          description: "TiDB instance {{ $labels.instance }} has been down for more than 1 minute."

      # QPS异常
      - alert: TiDBHighQPS
        expr: rate(tidb_server_query_total[5m]) > 2000
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "TiDB QPS is too high"
          description: "TiDB QPS on {{ $labels.instance }} is {{ $value }} queries per second."

      # 连接数过高
      - alert: TiDBHighConnections
        expr: tidb_server_connections > 800
        for: 2m
        labels:
          severity: warning
        annotations:
          summary: "TiDB connections are too high"
          description: "TiDB connections on {{ $labels.instance }} is {{ $value }}."

      # 慢查询过多
      - alert: TiDBSlowQuery
        expr: increase(tidb_server_slow_query_total[5m]) > 10
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "Too many slow queries"
          description: "TiDB instance {{ $labels.instance }} has {{ $value }} slow queries in the last 5 minutes."

      # 内存使用率过高
      - alert: TiDBHighMemory
        expr: process_resident_memory_bytes{job="tidb"} / 1024 / 1024 / 1024 > 8
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "TiDB memory usage is too high"
          description: "TiDB memory usage on {{ $labels.instance }} is {{ $value }}GB."

Grafana仪表板配置:

{
  "dashboard": {
    "id": null,
    "title": "TiDB Overview",
    "tags": ["tidb"],
    "timezone": "browser",
    "panels": [
      {
        "id": 1,
        "title": "QPS",
        "type": "graph",
        "targets": [
          {
            "expr": "sum(rate(tidb_server_query_total[1m]))",
            "legendFormat": "Total QPS",
            "refId": "A"
          },
          {
            "expr": "sum(rate(tidb_server_query_total{type=\"Select\"}[1m]))",
            "legendFormat": "Select QPS",
            "refId": "B"
          },
          {
            "expr": "sum(rate(tidb_server_query_total{type=\"Insert\"}[1m]))",
            "legendFormat": "Insert QPS",
            "refId": "C"
          }
        ],
        "yAxes": [
          {
            "label": "queries/sec",
            "min": 0
          }
        ],
        "gridPos": {
          "h": 8,
          "w": 12,
          "x": 0,
          "y": 0
        }
      },
      {
        "id": 2,
        "title": "Query Duration",
        "type": "graph",
        "targets": [
          {
            "expr": "histogram_quantile(0.99, sum(rate(tidb_server_handle_query_duration_seconds_bucket[1m])) by (le))",
            "legendFormat": "99th percentile",
            "refId": "A"
          },
          {
            "expr": "histogram_quantile(0.95, sum(rate(tidb_server_handle_query_duration_seconds_bucket[1m])) by (le))",
            "legendFormat": "95th percentile",
            "refId": "B"
          },
          {
            "expr": "histogram_quantile(0.90, sum(rate(tidb_server_handle_query_duration_seconds_bucket[1m])) by (le))",
            "legendFormat": "90th percentile",
            "refId": "C"
          }
        ],
        "yAxes": [
          {
            "label": "seconds",
            "min": 0
          }
        ],
        "gridPos": {
          "h": 8,
          "w": 12,
          "x": 12,
          "y": 0
        }
      },
      {
        "id": 3,
        "title": "Connection Count",
        "type": "singlestat",
        "targets": [
          {
            "expr": "sum(tidb_server_connections)",
            "refId": "A"
          }
        ],
        "valueName": "current",
        "gridPos": {
          "h": 4,
          "w": 6,
          "x": 0,
          "y": 8
        }
      },
      {
        "id": 4,
        "title": "TiKV Storage Size",
        "type": "graph",
        "targets": [
          {
            "expr": "sum(tikv_store_size_bytes) / 1024 / 1024 / 1024",
            "legendFormat": "Used Storage (GB)",
            "refId": "A"
          },
          {
            "expr": "sum(tikv_store_capacity_bytes) / 1024 / 1024 / 1024",
            "legendFormat": "Total Capacity (GB)",
            "refId": "B"
          }
        ],
        "yAxes": [
          {
            "label": "GB",
            "min": 0
          }
        ],
        "gridPos": {
          "h": 8,
          "w": 12,
          "x": 6,
          "y": 8
        }
      }
    ],
    "time": {
      "from": "now-1h",
      "to": "now"
    },
    "refresh": "30s"
  }
}

开发和集成工具

1. TiSpark集成

Spark应用配置:

// build.sbt
name := "TiSparkExample"
version := "1.0"
scalaVersion := "2.12.15"

libraryDependencies ++= Seq(
  "org.apache.spark" %% "spark-core" % "3.2.0",
  "org.apache.spark" %% "spark-sql" % "3.2.0",
  "com.pingcap.tispark" % "tispark-core" % "3.0.1",
  "com.pingcap.tikv" % "tikv-client-java" % "3.2.0"
)

TiSpark使用示例:

// TiSparkExample.scala
import org.apache.spark.sql.SparkSession
import com.pingcap.tispark.TiContext

object TiSparkExample {
  def main(args: Array[String]): Unit = {
    // 创建Spark会话
    val spark = SparkSession.builder()
      .appName("TiSpark Example")
      .master("local[*]")
      .config("spark.sql.extensions", "com.pingcap.tispark.TiExtensions")
      .config("spark.tispark.pd.addresses", "127.0.0.1:2379")
      .config("spark.sql.catalog.tidb_catalog", "com.pingcap.tispark.TiCatalog")
      .config("spark.sql.catalog.tidb_catalog.pd.addresses", "127.0.0.1:2379")
      .getOrCreate()

    // 创建TiContext
    val ti = new TiContext(spark)

    // 使用TiSpark读取TiDB数据
    val df = spark.sql("""
      SELECT 
        user_id,
        COUNT(*) as order_count,
        SUM(amount) as total_amount,
        AVG(amount) as avg_amount
      FROM tidb_catalog.ecommerce.orders 
      WHERE order_date >= '2024-01-01'
      GROUP BY user_id
      HAVING total_amount > 1000
      ORDER BY total_amount DESC
    """)

    // 显示结果
    df.show(20)

    // 数据分析
    val userAnalysis = spark.sql("""
      WITH user_stats AS (
        SELECT 
          u.user_id,
          u.registration_date,
          u.city,
          COUNT(o.order_id) as order_count,
          SUM(o.amount) as total_spent,
          MAX(o.order_date) as last_order_date
        FROM tidb_catalog.ecommerce.users u
        LEFT JOIN tidb_catalog.ecommerce.orders o ON u.user_id = o.user_id
        GROUP BY u.user_id, u.registration_date, u.city
      ),
      user_segments AS (
        SELECT 
          *,
          CASE 
            WHEN total_spent >= 5000 THEN 'VIP'
            WHEN total_spent >= 1000 THEN 'Premium'
            WHEN total_spent >= 100 THEN 'Regular'
            ELSE 'New'
          END as user_segment
        FROM user_stats
      )
      SELECT 
        city,
        user_segment,
        COUNT(*) as user_count,
        AVG(total_spent) as avg_spent,
        AVG(order_count) as avg_orders
      FROM user_segments
      GROUP BY city, user_segment
      ORDER BY city, user_segment
    """)

    // 保存分析结果
    userAnalysis
      .coalesce(1)
      .write
      .mode("overwrite")
      .option("header", "true")
      .csv("/data/analysis/user_segments")

    // 机器学习特征工程
    val features = spark.sql("""
      SELECT 
        user_id,
        DATEDIFF(CURRENT_DATE, registration_date) as days_since_registration,
        order_count,
        total_spent,
        avg_amount,
        DATEDIFF(CURRENT_DATE, last_order_date) as days_since_last_order,
        CASE WHEN city IN ('Beijing', 'Shanghai', 'Guangzhou', 'Shenzhen') 
             THEN 1 ELSE 0 END as is_tier1_city
      FROM (
        SELECT 
          u.user_id,
          u.registration_date,
          u.city,
          COUNT(o.order_id) as order_count,
          COALESCE(SUM(o.amount), 0) as total_spent,
          COALESCE(AVG(o.amount), 0) as avg_amount,
          COALESCE(MAX(o.order_date), u.registration_date) as last_order_date
        FROM tidb_catalog.ecommerce.users u
        LEFT JOIN tidb_catalog.ecommerce.orders o ON u.user_id = o.user_id
        GROUP BY u.user_id, u.registration_date, u.city
      ) user_features
    """)

    // 缓存特征数据
    features.cache()

    // 显示特征统计
    features.describe().show()

    spark.stop()
  }
}

2. TiFlash分析引擎

TiFlash部署和配置:

# 添加TiFlash节点
tiup cluster scale-out production-cluster tiflash-scale-out.yaml

# tiflash-scale-out.yaml
tiflash_servers:
  - host: 10.0.1.41
    data_dir: /data1/tiflash,/data2/tiflash
    deploy_dir: /tidb-deploy/tiflash-9000
    numa_node: "0,1"
    config:
      logger.level: "info"
      http_port: 8123
      tcp_port: 9000
      interserver_http_port: 9009
      
  - host: 10.0.1.42
    data_dir: /data1/tiflash,/data2/tiflash
    deploy_dir: /tidb-deploy/tiflash-9000
    numa_node: "0,1"

TiFlash表配置:

-- 为表添加TiFlash副本
ALTER TABLE ecommerce.orders SET TIFLASH REPLICA 2;
ALTER TABLE ecommerce.users SET TIFLASH REPLICA 2;
ALTER TABLE ecommerce.products SET TIFLASH REPLICA 2;

-- 检查TiFlash副本状态
SELECT 
    TABLE_SCHEMA,
    TABLE_NAME,
    REPLICA_COUNT,
    LOCATION_LABELS,
    AVAILABLE,
    PROGRESS
FROM information_schema.tiflash_replica;

-- 强制使用TiFlash进行查询
SET SESSION tidb_isolation_read_engines = 'tiflash';

-- 复杂分析查询示例
SELECT /*+ READ_FROM_STORAGE(TIFLASH[orders, users, products]) */
    p.category,
    p.brand,
    DATE_FORMAT(o.order_date, '%Y-%m') as month,
    COUNT(DISTINCT o.order_id) as order_count,
    COUNT(DISTINCT o.user_id) as unique_customers,
    SUM(o.quantity * o.unit_price) as revenue,
    AVG(o.quantity * o.unit_price) as avg_order_value
FROM orders o
JOIN products p ON o.product_id = p.product_id
JOIN users u ON o.user_id = u.user_id
WHERE o.order_date >= '2024-01-01'
GROUP BY p.category, p.brand, DATE_FORMAT(o.order_date, '%Y-%m')
ORDER BY month DESC, revenue DESC;

-- 窗口函数分析
SELECT /*+ READ_FROM_STORAGE(TIFLASH[orders]) */
    user_id,
    order_date,
    amount,
    ROW_NUMBER() OVER (PARTITION BY user_id ORDER BY order_date) as order_sequence,
    SUM(amount) OVER (PARTITION BY user_id ORDER BY order_date 
                      ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as cumulative_spent,
    LAG(order_date, 1) OVER (PARTITION BY user_id ORDER BY order_date) as prev_order_date,
    DATEDIFF(order_date, LAG(order_date, 1) OVER (PARTITION BY user_id ORDER BY order_date)) as days_between_orders
FROM orders
WHERE order_date >= '2024-01-01'
ORDER BY user_id, order_date;

3. 数据集成工具

Kafka Connect TiDB连接器:

{
  "name": "tidb-sink-connector",
  "config": {
    "connector.class": "io.confluent.connect.jdbc.JdbcSinkConnector",
    "tasks.max": "3",
    "topics": "user-events,order-events,product-events",
    "connection.url": "jdbc:mysql://127.0.0.1:4000/realtime_data?useSSL=false&serverTimezone=UTC",
    "connection.user": "kafka_user",
    "connection.password": "kafka_password",
    "auto.create": "true",
    "auto.evolve": "true",
    "insert.mode": "upsert",
    "pk.mode": "record_key",
    "pk.fields": "id",
    "batch.size": "1000",
    "max.retries": "3",
    "retry.backoff.ms": "5000",
    "transforms": "TimestampConverter",
    "transforms.TimestampConverter.type": "org.apache.kafka.connect.transforms.TimestampConverter$Value",
    "transforms.TimestampConverter.target.type": "Timestamp",
    "transforms.TimestampConverter.field": "timestamp"
  }
}

Flink TiDB连接器:

// FlinkTiDBExample.java
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.table.api.Table;

public class FlinkTiDBExample {
    public static void main(String[] args) throws Exception {
        // 创建Flink环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
        
        // 配置TiDB连接
        tableEnv.executeSql("""
            CREATE TABLE user_events (
                user_id BIGINT,
                event_type STRING,
                event_time TIMESTAMP(3),
                properties MAP<STRING, STRING>,
                WATERMARK FOR event_time AS event_time - INTERVAL '5' SECOND
            ) WITH (
                'connector' = 'kafka',
                'topic' = 'user-events',
                'properties.bootstrap.servers' = 'localhost:9092',
                'properties.group.id' = 'flink-consumer',
                'format' = 'json'
            )
        """);
        
        tableEnv.executeSql("""
            CREATE TABLE user_metrics (
                user_id BIGINT,
                window_start TIMESTAMP(3),
                window_end TIMESTAMP(3),
                event_count BIGINT,
                unique_event_types BIGINT,
                last_event_time TIMESTAMP(3),
                PRIMARY KEY (user_id, window_start) NOT ENFORCED
            ) WITH (
                'connector' = 'jdbc',
                'url' = 'jdbc:mysql://127.0.0.1:4000/realtime_analytics',
                'table-name' = 'user_metrics',
                'username' = 'flink_user',
                'password' = 'flink_password',
                'sink.buffer-flush.max-rows' = '1000',
                'sink.buffer-flush.interval' = '2s'
            )
        """);
        
        // 实时聚合计算
        Table result = tableEnv.sqlQuery("""
            SELECT 
                user_id,
                TUMBLE_START(event_time, INTERVAL '1' MINUTE) as window_start,
                TUMBLE_END(event_time, INTERVAL '1' MINUTE) as window_end,
                COUNT(*) as event_count,
                COUNT(DISTINCT event_type) as unique_event_types,
                MAX(event_time) as last_event_time
            FROM user_events
            GROUP BY user_id, TUMBLE(event_time, INTERVAL '1' MINUTE)
        """);
        
        // 写入TiDB
        result.executeInsert("user_metrics");
        
        env.execute("Flink TiDB Real-time Analytics");
    }
}

运维和自动化工具

1. TiUP集群管理

TiUP自动化脚本:

#!/bin/bash
# tiup_automation.sh - TiUP自动化运维脚本

set -e

CLUSTER_NAME="production-cluster"
LOG_FILE="/var/log/tiup-automation.log"
ALERT_WEBHOOK="https://hooks.slack.com/services/YOUR/WEBHOOK/URL"

# 日志函数
log() {
    echo "[$(date '+%Y-%m-%d %H:%M:%S')] $1" | tee -a $LOG_FILE
}

# 发送告警
send_alert() {
    local message="$1"
    local severity="$2"
    
    curl -X POST -H 'Content-type: application/json' \
        --data "{\"text\":\"[$severity] TiDB Cluster Alert: $message\"}" \
        $ALERT_WEBHOOK
}

# 健康检查
health_check() {
    log "开始健康检查"
    
    # 检查集群状态
    if ! tiup cluster display $CLUSTER_NAME --format json > /tmp/cluster_status.json; then
        log "ERROR: 无法获取集群状态"
        send_alert "无法获取集群状态" "CRITICAL"
        return 1
    fi
    
    # 检查节点状态
    local down_nodes=$(jq -r '.instances[] | select(.status != "Up") | .id' /tmp/cluster_status.json | wc -l)
    if [ $down_nodes -gt 0 ]; then
        log "WARNING: 发现 $down_nodes 个节点状态异常"
        send_alert "发现 $down_nodes 个节点状态异常" "WARNING"
    fi
    
    # 检查磁盘空间
    local high_disk_usage=$(tiup cluster exec $CLUSTER_NAME --command "df -h | awk 'NR>1 {gsub(\"%\",\"\",\$5); if(\$5>80) print \$6\":\"\$5\"%\"}'")    
    if [ -n "$high_disk_usage" ]; then
        log "WARNING: 磁盘使用率过高: $high_disk_usage"
        send_alert "磁盘使用率过高: $high_disk_usage" "WARNING"
    fi
    
    log "健康检查完成"
}

# 自动备份
auto_backup() {
    log "开始自动备份"
    
    local backup_path="s3://tidb-backup/$(date +%Y%m%d_%H%M%S)"
    
    if br backup full --pd "127.0.0.1:2379" --storage "$backup_path" --ratelimit 100MB; then
        log "备份成功: $backup_path"
    else
        log "ERROR: 备份失败"
        send_alert "自动备份失败" "CRITICAL"
        return 1
    fi
}

# 性能监控
performance_monitor() {
    log "开始性能监控"
    
    # 检查QPS
    local qps=$(curl -s 'http://prometheus:9090/api/v1/query?query=sum(rate(tidb_server_query_total[5m]))' | jq -r '.data.result[0].value[1]' 2>/dev/null || echo "0")
    log "当前QPS: $qps"
    
    if (( $(echo "$qps > 2000" | bc -l) )); then
        send_alert "QPS过高: $qps" "WARNING"
    fi
    
    # 检查连接数
    local connections=$(mysql -h 127.0.0.1 -P 4000 -u root -e "SELECT COUNT(*) FROM information_schema.processlist;" -s -N 2>/dev/null || echo "0")
    log "当前连接数: $connections"
    
    if [ $connections -gt 800 ]; then
        send_alert "连接数过高: $connections" "WARNING"
    fi
}

# 自动扩容检查
auto_scale_check() {
    log "检查是否需要自动扩容"
    
    # 检查CPU使用率
    local avg_cpu=$(tiup cluster exec $CLUSTER_NAME --command "top -bn1 | grep 'Cpu(s)' | awk '{print \$2}' | cut -d'%' -f1" | awk '{sum+=\$1; count++} END {print sum/count}')
    
    if (( $(echo "$avg_cpu > 80" | bc -l) )); then
        log "WARNING: 平均CPU使用率过高: ${avg_cpu}%"
        send_alert "建议进行扩容,CPU使用率: ${avg_cpu}%" "WARNING"
    fi
    
    # 检查存储使用率
    local storage_usage=$(curl -s 'http://prometheus:9090/api/v1/query?query=avg(tikv_store_size_bytes/tikv_store_capacity_bytes)*100' | jq -r '.data.result[0].value[1]' 2>/dev/null || echo "0")
    
    if (( $(echo "$storage_usage > 75" | bc -l) )); then
        log "WARNING: 存储使用率过高: ${storage_usage}%"
        send_alert "建议进行存储扩容,使用率: ${storage_usage}%" "WARNING"
    fi
}

# 主函数
main() {
    case "$1" in
        "health")
            health_check
            ;;
        "backup")
            auto_backup
            ;;
        "monitor")
            performance_monitor
            ;;
        "scale-check")
            auto_scale_check
            ;;
        "all")
            health_check
            performance_monitor
            auto_scale_check
            ;;
        *)
            echo "Usage: $0 {health|backup|monitor|scale-check|all}"
            exit 1
            ;;
    esac
}

main "$@"

2. Ansible自动化部署

Ansible Playbook示例:

# tidb-deployment.yml
---
- name: Deploy TiDB Cluster
  hosts: tidb_cluster
  become: yes
  vars:
    tidb_version: "v7.5.0"
    cluster_name: "production-cluster"
    
  tasks:
    - name: Install dependencies
      package:
        name:
          - curl
          - wget
          - tar
          - numactl
        state: present
    
    - name: Create tidb user
      user:
        name: tidb
        shell: /bin/bash
        create_home: yes
        
    - name: Download and install TiUP
      shell: |
        curl --proto '=https' --tlsv1.2 -sSf https://tiup-mirrors.pingcap.com/install.sh | sh
        source ~/.bashrc
      become_user: tidb
      
    - name: Install TiDB cluster
      shell: |
        tiup cluster deploy {{ cluster_name }} {{ tidb_version }} topology.yaml --user tidb -y
      become_user: tidb
      
    - name: Start TiDB cluster
      shell: |
        tiup cluster start {{ cluster_name }}
      become_user: tidb
      
    - name: Configure monitoring
      template:
        src: prometheus.yml.j2
        dest: /opt/prometheus/prometheus.yml
      notify: restart prometheus
      
  handlers:
    - name: restart prometheus
      systemd:
        name: prometheus
        state: restarted

3. 容器化部署

Docker Compose配置:

# docker-compose.yml
version: '3.8'

services:
  pd1:
    image: pingcap/pd:v7.5.0
    container_name: pd1
    ports:
      - "2379:2379"
      - "2380:2380"
    volumes:
      - pd1_data:/data
      - pd1_logs:/logs
    command: >
      --name=pd1
      --data-dir=/data
      --client-urls=http://0.0.0.0:2379
      --peer-urls=http://0.0.0.0:2380
      --advertise-client-urls=http://pd1:2379
      --advertise-peer-urls=http://pd1:2380
      --initial-cluster=pd1=http://pd1:2380,pd2=http://pd2:2380,pd3=http://pd3:2380
      --log-file=/logs/pd.log
    restart: unless-stopped
    
  pd2:
    image: pingcap/pd:v7.5.0
    container_name: pd2
    ports:
      - "2381:2379"
      - "2382:2380"
    volumes:
      - pd2_data:/data
      - pd2_logs:/logs
    command: >
      --name=pd2
      --data-dir=/data
      --client-urls=http://0.0.0.0:2379
      --peer-urls=http://0.0.0.0:2380
      --advertise-client-urls=http://pd2:2379
      --advertise-peer-urls=http://pd2:2380
      --initial-cluster=pd1=http://pd1:2380,pd2=http://pd2:2380,pd3=http://pd3:2380
      --log-file=/logs/pd.log
    restart: unless-stopped
    
  tikv1:
    image: pingcap/tikv:v7.5.0
    container_name: tikv1
    ports:
      - "20160:20160"
      - "20180:20180"
    volumes:
      - tikv1_data:/data
      - tikv1_logs:/logs
    command: >
      --pd-endpoints=http://pd1:2379,http://pd2:2379,http://pd3:2379
      --addr=0.0.0.0:20160
      --status-addr=0.0.0.0:20180
      --data-dir=/data
      --log-file=/logs/tikv.log
    depends_on:
      - pd1
      - pd2
    restart: unless-stopped
    
  tidb1:
    image: pingcap/tidb:v7.5.0
    container_name: tidb1
    ports:
      - "4000:4000"
      - "10080:10080"
    volumes:
      - tidb1_logs:/logs
    command: >
      --store=tikv
      --path=pd1:2379,pd2:2379,pd3:2379
      --log-file=/logs/tidb.log
      --advertise-address=tidb1
    depends_on:
      - tikv1
    restart: unless-stopped
    
  prometheus:
    image: prom/prometheus:latest
    container_name: prometheus
    ports:
      - "9090:9090"
    volumes:
      - ./prometheus.yml:/etc/prometheus/prometheus.yml
      - prometheus_data:/prometheus
    command:
      - '--config.file=/etc/prometheus/prometheus.yml'
      - '--storage.tsdb.path=/prometheus'
      - '--web.console.libraries=/etc/prometheus/console_libraries'
      - '--web.console.templates=/etc/prometheus/consoles'
    restart: unless-stopped
    
  grafana:
    image: grafana/grafana:latest
    container_name: grafana
    ports:
      - "3000:3000"
    volumes:
      - grafana_data:/var/lib/grafana
    environment:
      - GF_SECURITY_ADMIN_PASSWORD=admin123
    restart: unless-stopped

volumes:
  pd1_data:
  pd1_logs:
  pd2_data:
  pd2_logs:
  tikv1_data:
  tikv1_logs:
  tidb1_logs:
  prometheus_data:
  grafana_data:

networks:
  default:
    driver: bridge

性能测试和基准工具

1. Sysbench性能测试

Sysbench测试脚本:

#!/bin/bash
# sysbench_test.sh - TiDB性能测试脚本

set -e

# 配置参数
HOST="127.0.0.1"
PORT="4000"
USER="root"
PASSWORD=""
DATABASE="sbtest"
TABLES=16
TABLE_SIZE=1000000
THREADS=(1 4 8 16 32 64 128)
TIME=300
REPORT_INTERVAL=10

# 创建结果目录
RESULT_DIR="sysbench_results_$(date +%Y%m%d_%H%M%S)"
mkdir -p $RESULT_DIR

echo "开始TiDB性能测试"
echo "测试配置:"
echo "  数据库: $DATABASE"
echo "  表数量: $TABLES"
echo "  每表行数: $TABLE_SIZE"
echo "  测试时间: ${TIME}秒"
echo "  结果目录: $RESULT_DIR"

# 准备测试数据
echo "=== 准备测试数据 ==="
mysql -h $HOST -P $PORT -u $USER -p$PASSWORD -e "DROP DATABASE IF EXISTS $DATABASE; CREATE DATABASE $DATABASE;"

sysbench oltp_read_write \
  --mysql-host=$HOST \
  --mysql-port=$PORT \
  --mysql-user=$USER \
  --mysql-password=$PASSWORD \
  --mysql-db=$DATABASE \
  --tables=$TABLES \
  --table-size=$TABLE_SIZE \
  --threads=16 \
  prepare

echo "数据准备完成"

# 执行不同并发度的测试
for threads in "${THREADS[@]}"; do
    echo "=== 测试并发度: $threads ==="
    
    # OLTP读写混合测试
    echo "执行OLTP读写混合测试..."
    sysbench oltp_read_write \
      --mysql-host=$HOST \
      --mysql-port=$PORT \
      --mysql-user=$USER \
      --mysql-password=$PASSWORD \
      --mysql-db=$DATABASE \
      --tables=$TABLES \
      --table-size=$TABLE_SIZE \
      --threads=$threads \
      --time=$TIME \
      --report-interval=$REPORT_INTERVAL \
      --db-ps-mode=disable \
      run > "$RESULT_DIR/oltp_rw_${threads}threads.txt"
    
    # 只读测试
    echo "执行只读测试..."
    sysbench oltp_read_only \
      --mysql-host=$HOST \
      --mysql-port=$PORT \
      --mysql-user=$USER \
      --mysql-password=$PASSWORD \
      --mysql-db=$DATABASE \
      --tables=$TABLES \
      --table-size=$TABLE_SIZE \
      --threads=$threads \
      --time=$TIME \
      --report-interval=$REPORT_INTERVAL \
      --db-ps-mode=disable \
      run > "$RESULT_DIR/oltp_ro_${threads}threads.txt"
    
    # 只写测试
    echo "执行只写测试..."
    sysbench oltp_write_only \
      --mysql-host=$HOST \
      --mysql-port=$PORT \
      --mysql-user=$USER \
      --mysql-password=$PASSWORD \
      --mysql-db=$DATABASE \
      --tables=$TABLES \
      --table-size=$TABLE_SIZE \
      --threads=$threads \
      --time=$TIME \
      --report-interval=$REPORT_INTERVAL \
      --db-ps-mode=disable \
      run > "$RESULT_DIR/oltp_wo_${threads}threads.txt"
    
    echo "并发度 $threads 测试完成"
done

# 生成测试报告
echo "=== 生成测试报告 ==="
python3 << EOF
import os
import re
import json
from collections import defaultdict

result_dir = "$RESULT_DIR"
report = {
    "test_config": {
        "database": "$DATABASE",
        "tables": $TABLES,
        "table_size": $TABLE_SIZE,
        "test_time": $TIME
    },
    "results": defaultdict(dict)
}

# 解析测试结果
for filename in os.listdir(result_dir):
    if filename.endswith('.txt'):
        test_type = filename.split('_')[1]  # rw, ro, wo
        threads = int(re.search(r'(\d+)threads', filename).group(1))
        
        with open(os.path.join(result_dir, filename), 'r') as f:
            content = f.read()
            
        # 提取关键指标
        qps_match = re.search(r'queries per second:\s+([\d.]+)', content)
        latency_match = re.search(r'95th percentile:\s+([\d.]+)', content)
        
        if qps_match and latency_match:
            report["results"][threads][test_type] = {
                "qps": float(qps_match.group(1)),
                "latency_p95": float(latency_match.group(1))
            }

# 保存JSON报告
with open(os.path.join(result_dir, 'summary.json'), 'w') as f:
    json.dump(report, f, indent=2)

# 生成CSV报告
with open(os.path.join(result_dir, 'summary.csv'), 'w') as f:
    f.write('threads,test_type,qps,latency_p95\n')
    for threads in sorted(report["results"].keys()):
        for test_type, metrics in report["results"][threads].items():
            f.write(f'{threads},{test_type},{metrics["qps"]},{metrics["latency_p95"]}\n')

print(f"测试报告已生成: {result_dir}/summary.json")
print(f"CSV报告已生成: {result_dir}/summary.csv")
EOF

echo "性能测试完成,结果保存在: $RESULT_DIR"

2. 自定义性能测试

Go性能测试程序:

// tidb_benchmark.go
package main

import (
	"database/sql"
	"fmt"
	"log"
	"math/rand"
	"sync"
	"time"

	_ "github.com/go-sql-driver/mysql"
)

type BenchmarkConfig struct {
	DSN         string
	Concurrency int
	Duration    time.Duration
	Operations  []Operation
}

type Operation struct {
	Name   string
	SQL    string
	Weight int
}

type BenchmarkResult struct {
	TotalOps    int64
	SuccessOps  int64
	FailedOps   int64
	TotalTime   time.Duration
	MinLatency  time.Duration
	MaxLatency  time.Duration
	AvgLatency  time.Duration
	P95Latency  time.Duration
	QPS         float64
}

func main() {
	config := BenchmarkConfig{
		DSN:         "root:@tcp(127.0.0.1:4000)/sbtest",
		Concurrency: 32,
		Duration:    5 * time.Minute,
		Operations: []Operation{
			{"SELECT", "SELECT * FROM sbtest1 WHERE id = ?", 70},
			{"UPDATE", "UPDATE sbtest1 SET k = k + 1 WHERE id = ?", 20},
			{"INSERT", "INSERT INTO sbtest1 (k, c, pad) VALUES (?, ?, ?)", 5},
			{"DELETE", "DELETE FROM sbtest1 WHERE id = ?", 5},
		},
	}

	result := runBenchmark(config)
	printResult(result)
}

func runBenchmark(config BenchmarkConfig) BenchmarkResult {
	db, err := sql.Open("mysql", config.DSN)
	if err != nil {
		log.Fatal(err)
	}
	defer db.Close()

	db.SetMaxOpenConns(config.Concurrency * 2)
	db.SetMaxIdleConns(config.Concurrency)

	var wg sync.WaitGroup
	var totalOps, successOps, failedOps int64
	latencies := make([]time.Duration, 0, 1000000)
	var latencyMutex sync.Mutex

	startTime := time.Now()
	endTime := startTime.Add(config.Duration)

	for i := 0; i < config.Concurrency; i++ {
		wg.Add(1)
		go func() {
			defer wg.Done()
			worker(db, config.Operations, endTime, &totalOps, &successOps, &failedOps, &latencies, &latencyMutex)
		}()
	}

	wg.Wait()
	actualDuration := time.Since(startTime)

	return calculateResult(totalOps, successOps, failedOps, actualDuration, latencies)
}

func worker(db *sql.DB, operations []Operation, endTime time.Time, totalOps, successOps, failedOps *int64, latencies *[]time.Duration, latencyMutex *sync.Mutex) {
	for time.Now().Before(endTime) {
		op := selectOperation(operations)
		start := time.Now()
		
		err := executeOperation(db, op)
		latency := time.Since(start)
		
		atomicIncrement(totalOps)
		if err != nil {
			atomicIncrement(failedOps)
		} else {
			atomicIncrement(successOps)
		}
		
		latencyMutex.Lock()
		*latencies = append(*latencies, latency)
		latencyMutex.Unlock()
	}
}

func selectOperation(operations []Operation) Operation {
	totalWeight := 0
	for _, op := range operations {
		totalWeight += op.Weight
	}
	
	r := rand.Intn(totalWeight)
	currentWeight := 0
	
	for _, op := range operations {
		currentWeight += op.Weight
		if r < currentWeight {
			return op
		}
	}
	
	return operations[0]
}

func executeOperation(db *sql.DB, op Operation) error {
	switch op.Name {
	case "SELECT":
		id := rand.Intn(1000000) + 1
		rows, err := db.Query(op.SQL, id)
		if err != nil {
			return err
		}
		defer rows.Close()
		for rows.Next() {
			// 消费结果
		}
		return rows.Err()
		
	case "UPDATE":
		id := rand.Intn(1000000) + 1
		_, err := db.Exec(op.SQL, id)
		return err
		
	case "INSERT":
		k := rand.Intn(1000000)
		c := fmt.Sprintf("test-data-%d", rand.Intn(1000000))
		pad := "qqqqqqqqqqwwwwwwwwwweeeeeeeeeerrrrrrrrrrtttttttttt"
		_, err := db.Exec(op.SQL, k, c, pad)
		return err
		
	case "DELETE":
		id := rand.Intn(1000000) + 1
		_, err := db.Exec(op.SQL, id)
		return err
	}
	
	return nil
}

func atomicIncrement(counter *int64) {
	// 简化版本,实际应该使用 sync/atomic
	*counter++
}

func calculateResult(totalOps, successOps, failedOps int64, duration time.Duration, latencies []time.Duration) BenchmarkResult {
	// 计算延迟统计
	if len(latencies) == 0 {
		return BenchmarkResult{}
	}
	
	// 排序延迟数据
	for i := 0; i < len(latencies)-1; i++ {
		for j := i + 1; j < len(latencies); j++ {
			if latencies[i] > latencies[j] {
				latencies[i], latencies[j] = latencies[j], latencies[i]
			}
		}
	}
	
	minLatency := latencies[0]
	maxLatency := latencies[len(latencies)-1]
	
	// 计算平均延迟
	var totalLatency time.Duration
	for _, latency := range latencies {
		totalLatency += latency
	}
	avgLatency := totalLatency / time.Duration(len(latencies))
	
	// 计算P95延迟
	p95Index := int(float64(len(latencies)) * 0.95)
	p95Latency := latencies[p95Index]
	
	// 计算QPS
	qps := float64(successOps) / duration.Seconds()
	
	return BenchmarkResult{
		TotalOps:   totalOps,
		SuccessOps: successOps,
		FailedOps:  failedOps,
		TotalTime:  duration,
		MinLatency: minLatency,
		MaxLatency: maxLatency,
		AvgLatency: avgLatency,
		P95Latency: p95Latency,
		QPS:        qps,
	}
}

func printResult(result BenchmarkResult) {
	fmt.Println("=== 性能测试结果 ===")
	fmt.Printf("总操作数: %d\n", result.TotalOps)
	fmt.Printf("成功操作数: %d\n", result.SuccessOps)
	fmt.Printf("失败操作数: %d\n", result.FailedOps)
	fmt.Printf("成功率: %.2f%%\n", float64(result.SuccessOps)/float64(result.TotalOps)*100)
	fmt.Printf("测试时间: %v\n", result.TotalTime)
	fmt.Printf("QPS: %.2f\n", result.QPS)
	fmt.Printf("最小延迟: %v\n", result.MinLatency)
	fmt.Printf("最大延迟: %v\n", result.MaxLatency)
	fmt.Printf("平均延迟: %v\n", result.AvgLatency)
	fmt.Printf("P95延迟: %v\n", result.P95Latency)
}

社区资源和学习路径

1. 官方资源

官方文档和资源: - TiDB官方文档: https://docs.pingcap.com/zh/tidb/stable - TiDB GitHub: https://github.com/pingcap/tidb - PingCAP University: https://university.pingcap.com/ - TiDB社区: https://tidb.net/ - 官方博客: https://pingcap.com/blog/

认证和培训:

# 学习路径规划
class TiDBLearningPath:
    def __init__(self):
        self.learning_stages = {
            "beginner": {
                "duration": "2-4周",
                "topics": [
                    "TiDB架构基础",
                    "SQL基础操作",
                    "基本运维操作",
                    "监控和日志"
                ],
                "resources": [
                    "官方入门教程",
                    "TiDB Playground",
                    "基础实验环境"
                ]
            },
            "intermediate": {
                "duration": "4-8周",
                "topics": [
                    "高级SQL特性",
                    "性能调优",
                    "集群管理",
                    "备份恢复",
                    "数据迁移"
                ],
                "resources": [
                    "官方进阶教程",
                    "实际项目练习",
                    "社区案例研究"
                ]
            },
            "advanced": {
                "duration": "8-12周",
                "topics": [
                    "分布式事务",
                    "HTAP架构",
                    "源码分析",
                    "自定义开发",
                    "企业级部署"
                ],
                "resources": [
                    "源码阅读",
                    "技术论文",
                    "专家指导",
                    "企业项目"
                ]
            }
        }
        
        self.certifications = {
            "PCTA": {
                "name": "PingCAP Certified TiDB Associate",
                "level": "入门级",
                "topics": ["基础架构", "SQL操作", "基本运维"],
                "duration": "2小时",
                "passing_score": "70%"
            },
            "PCTP": {
                "name": "PingCAP Certified TiDB Professional",
                "level": "专业级",
                "topics": ["高级特性", "性能调优", "故障处理"],
                "duration": "3小时",
                "passing_score": "75%"
            }
        }
    
    def get_learning_plan(self, current_level, target_level, available_time):
        """生成个性化学习计划"""
        plan = {
            "current_level": current_level,
            "target_level": target_level,
            "estimated_duration": self._calculate_duration(current_level, target_level),
            "weekly_hours": available_time,
            "milestones": self._generate_milestones(current_level, target_level),
            "resources": self._recommend_resources(current_level, target_level)
        }
        return plan
    
    def _calculate_duration(self, current, target):
        levels = ["beginner", "intermediate", "advanced"]
        start_idx = levels.index(current)
        end_idx = levels.index(target)
        
        total_weeks = 0
        for i in range(start_idx, end_idx + 1):
            stage_duration = self.learning_stages[levels[i]]["duration"]
            weeks = int(stage_duration.split("-")[1].replace("周", ""))
            total_weeks += weeks
        
        return f"{total_weeks}周"
    
    def _generate_milestones(self, current, target):
        levels = ["beginner", "intermediate", "advanced"]
        start_idx = levels.index(current)
        end_idx = levels.index(target)
        
        milestones = []
        for i in range(start_idx, end_idx + 1):
            level = levels[i]
            milestones.append({
                "level": level,
                "topics": self.learning_stages[level]["topics"],
                "duration": self.learning_stages[level]["duration"]
            })
        
        return milestones
    
    def _recommend_resources(self, current, target):
        levels = ["beginner", "intermediate", "advanced"]
        start_idx = levels.index(current)
        end_idx = levels.index(target)
        
        resources = set()
        for i in range(start_idx, end_idx + 1):
            level = levels[i]
            resources.update(self.learning_stages[level]["resources"])
        
        return list(resources)

# 使用示例
learning_path = TiDBLearningPath()
plan = learning_path.get_learning_plan("beginner", "advanced", 10)  # 每周10小时
print(f"学习计划: {plan}")

2. 社区和支持

社区参与:

# 社区参与指南
community_engagement:
  forums:
    - name: "TiDB社区论坛"
      url: "https://tidb.net/"
      description: "官方中文社区,技术讨论和问题解答"
      
    - name: "GitHub Discussions"
      url: "https://github.com/pingcap/tidb/discussions"
      description: "英文技术讨论,功能请求和bug报告"
      
    - name: "Stack Overflow"
      url: "https://stackoverflow.com/questions/tagged/tidb"
      description: "编程问题和解决方案"
  
  social_media:
    - platform: "微信群"
      description: "TiDB用户交流群,实时讨论"
      
    - platform: "知乎"
      description: "TiDB技术文章和经验分享"
      
    - platform: "Twitter"
      handle: "@PingCAP"
      description: "官方动态和技术更新"
  
  events:
    - name: "TiDB DevCon"
      frequency: "年度"
      description: "官方技术大会,最新技术分享"
      
    - name: "TiDB Meetup"
      frequency: "月度"
      description: "本地技术聚会,用户经验分享"
      
    - name: "Hackathon"
      frequency: "季度"
      description: "编程竞赛,创新项目展示"
  
  contribution:
    code:
      - "修复bug和改进功能"
      - "编写测试用例"
      - "性能优化"
      
    documentation:
      - "完善官方文档"
      - "翻译英文文档"
      - "编写教程和案例"
      
    community:
      - "回答社区问题"
      - "分享使用经验"
      - "组织本地活动"

3. 实践项目建议

项目实践路径:

class TiDBProjectGuide:
    def __init__(self):
        self.projects = {
            "beginner": [
                {
                    "name": "个人博客系统",
                    "description": "使用TiDB作为后端数据库的简单博客系统",
                    "technologies": ["TiDB", "Python/Go", "Web框架"],
                    "learning_goals": ["基本CRUD操作", "连接池管理", "简单查询优化"],
                    "duration": "2-3周"
                },
                {
                    "name": "库存管理系统",
                    "description": "小型企业库存管理,支持商品增删改查",
                    "technologies": ["TiDB", "事务处理", "报表生成"],
                    "learning_goals": ["事务使用", "数据一致性", "基础监控"],
                    "duration": "3-4周"
                }
            ],
            "intermediate": [
                {
                    "name": "电商订单系统",
                    "description": "支持高并发的电商订单处理系统",
                    "technologies": ["TiDB", "分布式事务", "缓存", "消息队列"],
                    "learning_goals": ["分布式事务", "性能调优", "读写分离"],
                    "duration": "6-8周"
                },
                {
                    "name": "数据分析平台",
                    "description": "基于TiFlash的实时数据分析平台",
                    "technologies": ["TiDB", "TiFlash", "HTAP", "可视化"],
                    "learning_goals": ["HTAP架构", "复杂查询", "实时分析"],
                    "duration": "8-10周"
                }
            ],
            "advanced": [
                {
                    "name": "金融交易系统",
                    "description": "高可用、强一致性的金融交易处理系统",
                    "technologies": ["TiDB集群", "灾备", "安全", "合规"],
                    "learning_goals": ["集群管理", "灾备方案", "安全加固"],
                    "duration": "12-16周"
                },
                {
                    "name": "IoT数据平台",
                    "description": "处理海量IoT设备数据的实时处理平台",
                    "technologies": ["TiDB", "时序数据", "流处理", "机器学习"],
                    "learning_goals": ["海量数据处理", "实时计算", "智能运维"],
                    "duration": "16-20周"
                }
            ]
        }
    
    def get_project_recommendation(self, skill_level, interests, available_time):
        """根据技能水平和兴趣推荐项目"""
        suitable_projects = self.projects.get(skill_level, [])
        
        # 根据兴趣和时间筛选项目
        recommendations = []
        for project in suitable_projects:
            if self._matches_interests(project, interests):
                if self._fits_timeline(project, available_time):
                    recommendations.append(project)
        
        return recommendations
    
    def _matches_interests(self, project, interests):
        """检查项目是否匹配兴趣"""
        project_keywords = project["name"].lower() + " " + project["description"].lower()
        return any(interest.lower() in project_keywords for interest in interests)
    
    def _fits_timeline(self, project, available_weeks):
        """检查项目是否适合可用时间"""
        project_duration = project["duration"]
        max_weeks = int(project_duration.split("-")[1].replace("周", ""))
        return max_weeks <= available_weeks

# 使用示例
project_guide = TiDBProjectGuide()
recommendations = project_guide.get_project_recommendation(
    skill_level="intermediate",
    interests=["电商", "数据分析"],
    available_time=10
)
print(f"推荐项目: {recommendations}")

总结

关键要点

  1. 生态系统完整性

    • TiDB拥有完整的工具生态系统,覆盖开发、运维、监控等各个环节
    • 工具之间集成度高,能够形成完整的解决方案
    • 持续的社区贡献和官方支持保证了生态系统的活跃度
  2. 工具分类和选择

    • 数据迁移工具: DM、TiDB Lightning、Dumpling各有特色
    • 监控工具: Prometheus + Grafana提供全方位监控
    • 开发工具: 多语言驱动支持,丰富的ORM集成
    • 运维工具: TiUP简化集群管理,BR提供备份恢复
  3. 自动化和DevOps

    • 支持容器化部署和Kubernetes编排
    • 提供完整的CI/CD集成方案
    • 自动化运维脚本和监控告警
  4. 性能测试和优化

    • 标准化的性能测试工具和方法
    • 自定义测试程序满足特定需求
    • 持续的性能监控和优化

最佳实践

  1. 工具选择策略

    • 根据具体需求选择合适的工具
    • 优先使用官方推荐的工具组合
    • 考虑工具的学习成本和维护复杂度
  2. 集成和自动化

    • 建立完整的DevOps流水线
    • 实现监控、告警、自动恢复的闭环
    • 定期进行灾备演练和性能测试
  3. 社区参与

    • 积极参与社区讨论和贡献
    • 分享使用经验和最佳实践
    • 关注技术发展趋势和新特性
  4. 持续学习

    • 制定系统的学习计划
    • 通过实际项目加深理解
    • 获得相关认证提升专业水平

下一步学习建议

  1. 深入特定领域

    • 选择感兴趣的工具进行深入学习
    • 参与开源项目的开发和贡献
    • 研究企业级部署和优化案例
  2. 实践项目

    • 从简单项目开始,逐步提升复杂度
    • 结合实际业务需求进行项目设计
    • 注重性能测试和优化实践
  3. 技术拓展

    • 学习相关的大数据和云原生技术
    • 了解数据库发展趋势和新技术
    • 培养系统架构和技术选型能力

通过系统学习TiDB生态系统和工具,你将能够: - 熟练使用各种TiDB工具解决实际问题 - 设计和实施完整的TiDB解决方案 - 参与TiDB社区建设和技术发展 - 在分布式数据库领域建立专业优势

这标志着TiDB学习教程的完成。从基础概念到高级特性,从开发实践到运维管理,再到生态工具的掌握,你已经具备了全面的TiDB技能。继续实践和探索,在分布式数据库的道路上不断前进!